Loading…
An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose
Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characteriz...
Saved in:
Published in: | Microscopy research and technique 2022-05, Vol.85 (5), p.1990-2015 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3 |
container_end_page | 2015 |
container_issue | 5 |
container_start_page | 1990 |
container_title | Microscopy research and technique |
container_volume | 85 |
creator | Chakraborty, Ishita Rongpipi, Sintu Govindaraju, Indira B, Rakesh Mal, Sib Sankar Gomez, Esther W. Gomez, Enrique D. Kalita, Ranjan Dutta Nath, Yuthika Mazumder, Nirmal |
description | Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties.
Highlights
Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy.
Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
Schematics of ultrastructure of cellulose fibers from plant sources. |
doi_str_mv | 10.1002/jemt.24057 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1847200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655903459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoqWw4QGQBRuESLGdOE6WVVV-qlZsisTOciaTxldJfLEdocsL8Nq1SWHBogtrRsefjzxzCHnJ2SlnTHzY4RxPRcWkekSOOWtVkdT2ce5lW7ScfT8iz0LYMca55NVTclRKlvCyOSa_zxZql2Bvx5hqdHS24F0Atz9Qs_TpmOkQLZiJRoRxsT9WDHRwns7O70c3udt8-Z6G6FeIq889jDhvaraII_o5vYfReAMRvf1lonULdQMFnKZ1cgGfkyeDmQK-uK8n5NvHi5vzz8XV109fzs-uCqgEU0VnuqbklTEgVF3z3tQi6bLsRIOVKbHGeuigkX1ieg6Sd2pQoEypsAduuvKEvN58XYhWB7B5KnDLghA1byolGEvQ2w3ae5fnjXq2IX_VLOjWoEUtOOONlE1C3_yH7tzq09IyJWXLykq2iXq3UXm3weOg997Oxh80ZzpnqHOG-k-GCX51b7l2M_b_0L-hJYBvwE874eEBK315cX2zmd4B0TGpNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655903459</pqid></control><display><type>article</type><title>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</title><source>Wiley</source><creator>Chakraborty, Ishita ; Rongpipi, Sintu ; Govindaraju, Indira ; B, Rakesh ; Mal, Sib Sankar ; Gomez, Esther W. ; Gomez, Enrique D. ; Kalita, Ranjan Dutta ; Nath, Yuthika ; Mazumder, Nirmal</creator><creatorcontrib>Chakraborty, Ishita ; Rongpipi, Sintu ; Govindaraju, Indira ; B, Rakesh ; Mal, Sib Sankar ; Gomez, Esther W. ; Gomez, Enrique D. ; Kalita, Ranjan Dutta ; Nath, Yuthika ; Mazumder, Nirmal</creatorcontrib><description>Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties.
Highlights
Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy.
Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
Schematics of ultrastructure of cellulose fibers from plant sources.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24057</identifier><identifier>PMID: 35040538</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Atomic force microscopy ; Calorimetry ; Calorimetry, Differential Scanning ; Cellulose ; Cellulose - chemistry ; Chemical composition ; crystallinity ; Differential scanning calorimetry ; electron microscope ; Fourier analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; Heat measurement ; Industrial applications ; Infrared analysis ; Infrared spectroscopy ; Light microscopy ; Magnetic resonance spectroscopy ; Microscopes ; Microscopy, Electron, Scanning ; Morphology ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Optical microscopy ; Physicochemical properties ; Polymers ; Polysaccharides ; Raman spectroscopy ; Raw materials ; Scanning electron microscopy ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Structural analysis ; Thermal properties ; Thermodynamic properties ; Thermogravimetric analysis ; Topography ; Transmission electron microscopy ; X-Ray Diffraction</subject><ispartof>Microscopy research and technique, 2022-05, Vol.85 (5), p.1990-2015</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</citedby><cites>FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</cites><orcidid>0000-0001-8068-6484 ; 0000000180686484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35040538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1847200$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Ishita</creatorcontrib><creatorcontrib>Rongpipi, Sintu</creatorcontrib><creatorcontrib>Govindaraju, Indira</creatorcontrib><creatorcontrib>B, Rakesh</creatorcontrib><creatorcontrib>Mal, Sib Sankar</creatorcontrib><creatorcontrib>Gomez, Esther W.</creatorcontrib><creatorcontrib>Gomez, Enrique D.</creatorcontrib><creatorcontrib>Kalita, Ranjan Dutta</creatorcontrib><creatorcontrib>Nath, Yuthika</creatorcontrib><creatorcontrib>Mazumder, Nirmal</creatorcontrib><title>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties.
Highlights
Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy.
Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
Schematics of ultrastructure of cellulose fibers from plant sources.</description><subject>Atomic force microscopy</subject><subject>Calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Chemical composition</subject><subject>crystallinity</subject><subject>Differential scanning calorimetry</subject><subject>electron microscope</subject><subject>Fourier analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Heat measurement</subject><subject>Industrial applications</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Light microscopy</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microscopes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Morphology</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Optical microscopy</subject><subject>Physicochemical properties</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Raman spectroscopy</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Structural analysis</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Topography</subject><subject>Transmission electron microscopy</subject><subject>X-Ray Diffraction</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EoqWw4QGQBRuESLGdOE6WVVV-qlZsisTOciaTxldJfLEdocsL8Nq1SWHBogtrRsefjzxzCHnJ2SlnTHzY4RxPRcWkekSOOWtVkdT2ce5lW7ScfT8iz0LYMca55NVTclRKlvCyOSa_zxZql2Bvx5hqdHS24F0Atz9Qs_TpmOkQLZiJRoRxsT9WDHRwns7O70c3udt8-Z6G6FeIq889jDhvaraII_o5vYfReAMRvf1lonULdQMFnKZ1cgGfkyeDmQK-uK8n5NvHi5vzz8XV109fzs-uCqgEU0VnuqbklTEgVF3z3tQi6bLsRIOVKbHGeuigkX1ieg6Sd2pQoEypsAduuvKEvN58XYhWB7B5KnDLghA1byolGEvQ2w3ae5fnjXq2IX_VLOjWoEUtOOONlE1C3_yH7tzq09IyJWXLykq2iXq3UXm3weOg997Oxh80ZzpnqHOG-k-GCX51b7l2M_b_0L-hJYBvwE874eEBK315cX2zmd4B0TGpNQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Chakraborty, Ishita</creator><creator>Rongpipi, Sintu</creator><creator>Govindaraju, Indira</creator><creator>B, Rakesh</creator><creator>Mal, Sib Sankar</creator><creator>Gomez, Esther W.</creator><creator>Gomez, Enrique D.</creator><creator>Kalita, Ranjan Dutta</creator><creator>Nath, Yuthika</creator><creator>Mazumder, Nirmal</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8068-6484</orcidid><orcidid>https://orcid.org/0000000180686484</orcidid></search><sort><creationdate>202205</creationdate><title>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</title><author>Chakraborty, Ishita ; Rongpipi, Sintu ; Govindaraju, Indira ; B, Rakesh ; Mal, Sib Sankar ; Gomez, Esther W. ; Gomez, Enrique D. ; Kalita, Ranjan Dutta ; Nath, Yuthika ; Mazumder, Nirmal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Chemical composition</topic><topic>crystallinity</topic><topic>Differential scanning calorimetry</topic><topic>electron microscope</topic><topic>Fourier analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Heat measurement</topic><topic>Industrial applications</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Light microscopy</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microscopes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Morphology</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Optical microscopy</topic><topic>Physicochemical properties</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Raman spectroscopy</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Structural analysis</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Topography</topic><topic>Transmission electron microscopy</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Ishita</creatorcontrib><creatorcontrib>Rongpipi, Sintu</creatorcontrib><creatorcontrib>Govindaraju, Indira</creatorcontrib><creatorcontrib>B, Rakesh</creatorcontrib><creatorcontrib>Mal, Sib Sankar</creatorcontrib><creatorcontrib>Gomez, Esther W.</creatorcontrib><creatorcontrib>Gomez, Enrique D.</creatorcontrib><creatorcontrib>Kalita, Ranjan Dutta</creatorcontrib><creatorcontrib>Nath, Yuthika</creatorcontrib><creatorcontrib>Mazumder, Nirmal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Ishita</au><au>Rongpipi, Sintu</au><au>Govindaraju, Indira</au><au>B, Rakesh</au><au>Mal, Sib Sankar</au><au>Gomez, Esther W.</au><au>Gomez, Enrique D.</au><au>Kalita, Ranjan Dutta</au><au>Nath, Yuthika</au><au>Mazumder, Nirmal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2022-05</date><risdate>2022</risdate><volume>85</volume><issue>5</issue><spage>1990</spage><epage>2015</epage><pages>1990-2015</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties.
Highlights
Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy.
Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
Schematics of ultrastructure of cellulose fibers from plant sources.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>35040538</pmid><doi>10.1002/jemt.24057</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8068-6484</orcidid><orcidid>https://orcid.org/0000000180686484</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2022-05, Vol.85 (5), p.1990-2015 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1847200 |
source | Wiley |
subjects | Atomic force microscopy Calorimetry Calorimetry, Differential Scanning Cellulose Cellulose - chemistry Chemical composition crystallinity Differential scanning calorimetry electron microscope Fourier analysis Fourier transform infrared spectroscopy Fourier transforms Heat measurement Industrial applications Infrared analysis Infrared spectroscopy Light microscopy Magnetic resonance spectroscopy Microscopes Microscopy, Electron, Scanning Morphology NMR NMR spectroscopy Nuclear magnetic resonance Optical microscopy Physicochemical properties Polymers Polysaccharides Raman spectroscopy Raw materials Scanning electron microscopy Spectroscopy, Fourier Transform Infrared Spectrum analysis Structural analysis Thermal properties Thermodynamic properties Thermogravimetric analysis Topography Transmission electron microscopy X-Ray Diffraction |
title | An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20insight%20into%20microscopy%20and%20analytical%20techniques%20for%20morphological,%20structural,%20chemical,%20and%20thermal%20characterization%20of%20cellulose&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Chakraborty,%20Ishita&rft.date=2022-05&rft.volume=85&rft.issue=5&rft.spage=1990&rft.epage=2015&rft.pages=1990-2015&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24057&rft_dat=%3Cproquest_osti_%3E2655903459%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655903459&rft_id=info:pmid/35040538&rfr_iscdi=true |