Loading…

An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose

Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characteriz...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy research and technique 2022-05, Vol.85 (5), p.1990-2015
Main Authors: Chakraborty, Ishita, Rongpipi, Sintu, Govindaraju, Indira, B, Rakesh, Mal, Sib Sankar, Gomez, Esther W., Gomez, Enrique D., Kalita, Ranjan Dutta, Nath, Yuthika, Mazumder, Nirmal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3
cites cdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3
container_end_page 2015
container_issue 5
container_start_page 1990
container_title Microscopy research and technique
container_volume 85
creator Chakraborty, Ishita
Rongpipi, Sintu
Govindaraju, Indira
B, Rakesh
Mal, Sib Sankar
Gomez, Esther W.
Gomez, Enrique D.
Kalita, Ranjan Dutta
Nath, Yuthika
Mazumder, Nirmal
description Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties. Highlights Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Schematics of ultrastructure of cellulose fibers from plant sources.
doi_str_mv 10.1002/jemt.24057
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1847200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655903459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoqWw4QGQBRuESLGdOE6WVVV-qlZsisTOciaTxldJfLEdocsL8Nq1SWHBogtrRsefjzxzCHnJ2SlnTHzY4RxPRcWkekSOOWtVkdT2ce5lW7ScfT8iz0LYMca55NVTclRKlvCyOSa_zxZql2Bvx5hqdHS24F0Atz9Qs_TpmOkQLZiJRoRxsT9WDHRwns7O70c3udt8-Z6G6FeIq889jDhvaraII_o5vYfReAMRvf1lonULdQMFnKZ1cgGfkyeDmQK-uK8n5NvHi5vzz8XV109fzs-uCqgEU0VnuqbklTEgVF3z3tQi6bLsRIOVKbHGeuigkX1ieg6Sd2pQoEypsAduuvKEvN58XYhWB7B5KnDLghA1byolGEvQ2w3ae5fnjXq2IX_VLOjWoEUtOOONlE1C3_yH7tzq09IyJWXLykq2iXq3UXm3weOg997Oxh80ZzpnqHOG-k-GCX51b7l2M_b_0L-hJYBvwE874eEBK315cX2zmd4B0TGpNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655903459</pqid></control><display><type>article</type><title>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</title><source>Wiley</source><creator>Chakraborty, Ishita ; Rongpipi, Sintu ; Govindaraju, Indira ; B, Rakesh ; Mal, Sib Sankar ; Gomez, Esther W. ; Gomez, Enrique D. ; Kalita, Ranjan Dutta ; Nath, Yuthika ; Mazumder, Nirmal</creator><creatorcontrib>Chakraborty, Ishita ; Rongpipi, Sintu ; Govindaraju, Indira ; B, Rakesh ; Mal, Sib Sankar ; Gomez, Esther W. ; Gomez, Enrique D. ; Kalita, Ranjan Dutta ; Nath, Yuthika ; Mazumder, Nirmal</creatorcontrib><description>Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties. Highlights Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Schematics of ultrastructure of cellulose fibers from plant sources.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24057</identifier><identifier>PMID: 35040538</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Atomic force microscopy ; Calorimetry ; Calorimetry, Differential Scanning ; Cellulose ; Cellulose - chemistry ; Chemical composition ; crystallinity ; Differential scanning calorimetry ; electron microscope ; Fourier analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; Heat measurement ; Industrial applications ; Infrared analysis ; Infrared spectroscopy ; Light microscopy ; Magnetic resonance spectroscopy ; Microscopes ; Microscopy, Electron, Scanning ; Morphology ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Optical microscopy ; Physicochemical properties ; Polymers ; Polysaccharides ; Raman spectroscopy ; Raw materials ; Scanning electron microscopy ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Structural analysis ; Thermal properties ; Thermodynamic properties ; Thermogravimetric analysis ; Topography ; Transmission electron microscopy ; X-Ray Diffraction</subject><ispartof>Microscopy research and technique, 2022-05, Vol.85 (5), p.1990-2015</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</citedby><cites>FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</cites><orcidid>0000-0001-8068-6484 ; 0000000180686484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35040538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1847200$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Ishita</creatorcontrib><creatorcontrib>Rongpipi, Sintu</creatorcontrib><creatorcontrib>Govindaraju, Indira</creatorcontrib><creatorcontrib>B, Rakesh</creatorcontrib><creatorcontrib>Mal, Sib Sankar</creatorcontrib><creatorcontrib>Gomez, Esther W.</creatorcontrib><creatorcontrib>Gomez, Enrique D.</creatorcontrib><creatorcontrib>Kalita, Ranjan Dutta</creatorcontrib><creatorcontrib>Nath, Yuthika</creatorcontrib><creatorcontrib>Mazumder, Nirmal</creatorcontrib><title>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties. Highlights Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Schematics of ultrastructure of cellulose fibers from plant sources.</description><subject>Atomic force microscopy</subject><subject>Calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Chemical composition</subject><subject>crystallinity</subject><subject>Differential scanning calorimetry</subject><subject>electron microscope</subject><subject>Fourier analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Heat measurement</subject><subject>Industrial applications</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Light microscopy</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microscopes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Morphology</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Optical microscopy</subject><subject>Physicochemical properties</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Raman spectroscopy</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Structural analysis</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Topography</subject><subject>Transmission electron microscopy</subject><subject>X-Ray Diffraction</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EoqWw4QGQBRuESLGdOE6WVVV-qlZsisTOciaTxldJfLEdocsL8Nq1SWHBogtrRsefjzxzCHnJ2SlnTHzY4RxPRcWkekSOOWtVkdT2ce5lW7ScfT8iz0LYMca55NVTclRKlvCyOSa_zxZql2Bvx5hqdHS24F0Atz9Qs_TpmOkQLZiJRoRxsT9WDHRwns7O70c3udt8-Z6G6FeIq889jDhvaraII_o5vYfReAMRvf1lonULdQMFnKZ1cgGfkyeDmQK-uK8n5NvHi5vzz8XV109fzs-uCqgEU0VnuqbklTEgVF3z3tQi6bLsRIOVKbHGeuigkX1ieg6Sd2pQoEypsAduuvKEvN58XYhWB7B5KnDLghA1byolGEvQ2w3ae5fnjXq2IX_VLOjWoEUtOOONlE1C3_yH7tzq09IyJWXLykq2iXq3UXm3weOg997Oxh80ZzpnqHOG-k-GCX51b7l2M_b_0L-hJYBvwE874eEBK315cX2zmd4B0TGpNQ</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Chakraborty, Ishita</creator><creator>Rongpipi, Sintu</creator><creator>Govindaraju, Indira</creator><creator>B, Rakesh</creator><creator>Mal, Sib Sankar</creator><creator>Gomez, Esther W.</creator><creator>Gomez, Enrique D.</creator><creator>Kalita, Ranjan Dutta</creator><creator>Nath, Yuthika</creator><creator>Mazumder, Nirmal</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8068-6484</orcidid><orcidid>https://orcid.org/0000000180686484</orcidid></search><sort><creationdate>202205</creationdate><title>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</title><author>Chakraborty, Ishita ; Rongpipi, Sintu ; Govindaraju, Indira ; B, Rakesh ; Mal, Sib Sankar ; Gomez, Esther W. ; Gomez, Enrique D. ; Kalita, Ranjan Dutta ; Nath, Yuthika ; Mazumder, Nirmal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Chemical composition</topic><topic>crystallinity</topic><topic>Differential scanning calorimetry</topic><topic>electron microscope</topic><topic>Fourier analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Heat measurement</topic><topic>Industrial applications</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Light microscopy</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microscopes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Morphology</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Optical microscopy</topic><topic>Physicochemical properties</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Raman spectroscopy</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Structural analysis</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Topography</topic><topic>Transmission electron microscopy</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Ishita</creatorcontrib><creatorcontrib>Rongpipi, Sintu</creatorcontrib><creatorcontrib>Govindaraju, Indira</creatorcontrib><creatorcontrib>B, Rakesh</creatorcontrib><creatorcontrib>Mal, Sib Sankar</creatorcontrib><creatorcontrib>Gomez, Esther W.</creatorcontrib><creatorcontrib>Gomez, Enrique D.</creatorcontrib><creatorcontrib>Kalita, Ranjan Dutta</creatorcontrib><creatorcontrib>Nath, Yuthika</creatorcontrib><creatorcontrib>Mazumder, Nirmal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Ishita</au><au>Rongpipi, Sintu</au><au>Govindaraju, Indira</au><au>B, Rakesh</au><au>Mal, Sib Sankar</au><au>Gomez, Esther W.</au><au>Gomez, Enrique D.</au><au>Kalita, Ranjan Dutta</au><au>Nath, Yuthika</au><au>Mazumder, Nirmal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2022-05</date><risdate>2022</risdate><volume>85</volume><issue>5</issue><spage>1990</spage><epage>2015</epage><pages>1990-2015</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Cellulose obtained from plants is a bio‐polysaccharide and the most abundant organic polymer on earth that has immense household and industrial applications. Hence, the characterization of cellulose is important for determining its appropriate applications. In this article, we review the characterization of cellulose morphology, surface topography using microscopic techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Other physicochemical characteristics like crystallinity, chemical composition, and thermal properties are studied using techniques including X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This review may contribute to the development of using cellulose as a low‐cost raw material with anticipated physicochemical properties. Highlights Morphology and surface topography of cellulose structure is characterized using microscopy techniques including optical microscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Analytical techniques used for physicochemical characterization of cellulose include X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Schematics of ultrastructure of cellulose fibers from plant sources.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35040538</pmid><doi>10.1002/jemt.24057</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8068-6484</orcidid><orcidid>https://orcid.org/0000000180686484</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2022-05, Vol.85 (5), p.1990-2015
issn 1059-910X
1097-0029
language eng
recordid cdi_osti_scitechconnect_1847200
source Wiley
subjects Atomic force microscopy
Calorimetry
Calorimetry, Differential Scanning
Cellulose
Cellulose - chemistry
Chemical composition
crystallinity
Differential scanning calorimetry
electron microscope
Fourier analysis
Fourier transform infrared spectroscopy
Fourier transforms
Heat measurement
Industrial applications
Infrared analysis
Infrared spectroscopy
Light microscopy
Magnetic resonance spectroscopy
Microscopes
Microscopy, Electron, Scanning
Morphology
NMR
NMR spectroscopy
Nuclear magnetic resonance
Optical microscopy
Physicochemical properties
Polymers
Polysaccharides
Raman spectroscopy
Raw materials
Scanning electron microscopy
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
Structural analysis
Thermal properties
Thermodynamic properties
Thermogravimetric analysis
Topography
Transmission electron microscopy
X-Ray Diffraction
title An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20insight%20into%20microscopy%20and%20analytical%20techniques%20for%20morphological,%20structural,%20chemical,%20and%20thermal%20characterization%20of%20cellulose&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Chakraborty,%20Ishita&rft.date=2022-05&rft.volume=85&rft.issue=5&rft.spage=1990&rft.epage=2015&rft.pages=1990-2015&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24057&rft_dat=%3Cproquest_osti_%3E2655903459%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4207-bab8314aac27661da6242053b28e4a3e6e6fbc85d14ad1c51b7f7c7a37edc1ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2655903459&rft_id=info:pmid/35040538&rfr_iscdi=true