Loading…

Lattice flexibility in Ca3Ru2O7: Control of electrical transport via anisotropic magnetostriction

We report that Ca3Ru2O7 is a correlated and spin-orbit coupled system with an extraordinary anisotropy. It is both interesting and unique largely because this material exhibits conflicting phenomena that are often utterly inconsistent with traditional precedents, particularly, the quantum oscillatio...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2021-09, Vol.104 (12)
Main Authors: Zhao, Hengdi, Zheng, Hao, Terzic, Jasminka, Song, Wenhai, Ni, Yifei, Zhang, Yu, Schlottmann, Pedro, Cao, Gang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title Physical review. B
container_volume 104
creator Zhao, Hengdi
Zheng, Hao
Terzic, Jasminka
Song, Wenhai
Ni, Yifei
Zhang, Yu
Schlottmann, Pedro
Cao, Gang
description We report that Ca3Ru2O7 is a correlated and spin-orbit coupled system with an extraordinary anisotropy. It is both interesting and unique largely because this material exhibits conflicting phenomena that are often utterly inconsistent with traditional precedents, particularly, the quantum oscillations in the nonmetallic state and colossal magnetoresistivity achieved by avoiding a fully spin-polarized state. This work focuses on the relationship between the lattice and transport properties along each crystalline axis and reveals that application of magnetic field, H, along different crystalline axes readily stretches or shrinks the lattice in a uniaxial manner, resulting in distinct electronic states. Furthermore, application of modest pressure drastically amplifies the anisotropic magnetoelastic effect, leading to either an occurrence of a robust metallic state at H $∥$ hard axis or a reentrance of the nonmetallic state at H $∥$ easy axis. Ca3Ru2O7 presents a rare lattice-dependent magnetotransport mechanism, in which the extraordinary lattice flexibility enables an exquisite control of the electronic state via magnetically stretching or shrinking the crystalline axes, and the spin polarization plays an unconventional role unfavorable for maximizing conductivity. At the heart of the intriguing physics is the anisotropic magnetostriction that leads to exotic states.
doi_str_mv 10.1103/PhysRevB.104.L121119
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1848060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1848060</sourcerecordid><originalsourceid>FETCH-LOGICAL-o112t-a1a1609bc89f998b1f5d2cb3feb7132b25bc44fab27535d0164ca0ee607013b93</originalsourceid><addsrcrecordid>eNo9j01LAzEYhIMoWGr_gYfgfdf3TbIf8aaLX7BQKXouSZrYyJqUTSz237tF8TRzGGaeIeQSoUQEfv2yPaSV3d-VCKLskSGiPCEzJmpZSFnL039fwTlZpPQBAFiDbEDOiOpVzt5Y6gb77bUffD5QH2in-OqLLZsb2sWQxzjQ6KgdrMmjN2qgeVQh7eKY6d4rqoJPcUrtvKGf6j3YHNMxmH0MF-TMqSHZxZ_OydvD_Wv3VPTLx-futi8iIsuFQnWE0qaVTspWo6s2zGjurG6QM80qbYRwSrOm4tVmeiCMAmtraAC5lnxOrn57p2m_TsZna7YmhjAxr7EVLdTAfwBV0lq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice flexibility in Ca3Ru2O7: Control of electrical transport via anisotropic magnetostriction</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Zhao, Hengdi ; Zheng, Hao ; Terzic, Jasminka ; Song, Wenhai ; Ni, Yifei ; Zhang, Yu ; Schlottmann, Pedro ; Cao, Gang</creator><creatorcontrib>Zhao, Hengdi ; Zheng, Hao ; Terzic, Jasminka ; Song, Wenhai ; Ni, Yifei ; Zhang, Yu ; Schlottmann, Pedro ; Cao, Gang ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We report that Ca3Ru2O7 is a correlated and spin-orbit coupled system with an extraordinary anisotropy. It is both interesting and unique largely because this material exhibits conflicting phenomena that are often utterly inconsistent with traditional precedents, particularly, the quantum oscillations in the nonmetallic state and colossal magnetoresistivity achieved by avoiding a fully spin-polarized state. This work focuses on the relationship between the lattice and transport properties along each crystalline axis and reveals that application of magnetic field, H, along different crystalline axes readily stretches or shrinks the lattice in a uniaxial manner, resulting in distinct electronic states. Furthermore, application of modest pressure drastically amplifies the anisotropic magnetoelastic effect, leading to either an occurrence of a robust metallic state at H $∥$ hard axis or a reentrance of the nonmetallic state at H $∥$ easy axis. Ca3Ru2O7 presents a rare lattice-dependent magnetotransport mechanism, in which the extraordinary lattice flexibility enables an exquisite control of the electronic state via magnetically stretching or shrinking the crystalline axes, and the spin polarization plays an unconventional role unfavorable for maximizing conductivity. At the heart of the intriguing physics is the anisotropic magnetostriction that leads to exotic states.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.L121119</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; magnetoelastic effect ; magnetoresistance ; magnetostriction ; pressure effects ; spin polarization ; spin-orbit coupling</subject><ispartof>Physical review. B, 2021-09, Vol.104 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000189790405 ; 0000000186689811 ; 0000000346066323 ; 000000019779430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1848060$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hengdi</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Terzic, Jasminka</creatorcontrib><creatorcontrib>Song, Wenhai</creatorcontrib><creatorcontrib>Ni, Yifei</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Schlottmann, Pedro</creatorcontrib><creatorcontrib>Cao, Gang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Lattice flexibility in Ca3Ru2O7: Control of electrical transport via anisotropic magnetostriction</title><title>Physical review. B</title><description>We report that Ca3Ru2O7 is a correlated and spin-orbit coupled system with an extraordinary anisotropy. It is both interesting and unique largely because this material exhibits conflicting phenomena that are often utterly inconsistent with traditional precedents, particularly, the quantum oscillations in the nonmetallic state and colossal magnetoresistivity achieved by avoiding a fully spin-polarized state. This work focuses on the relationship between the lattice and transport properties along each crystalline axis and reveals that application of magnetic field, H, along different crystalline axes readily stretches or shrinks the lattice in a uniaxial manner, resulting in distinct electronic states. Furthermore, application of modest pressure drastically amplifies the anisotropic magnetoelastic effect, leading to either an occurrence of a robust metallic state at H $∥$ hard axis or a reentrance of the nonmetallic state at H $∥$ easy axis. Ca3Ru2O7 presents a rare lattice-dependent magnetotransport mechanism, in which the extraordinary lattice flexibility enables an exquisite control of the electronic state via magnetically stretching or shrinking the crystalline axes, and the spin polarization plays an unconventional role unfavorable for maximizing conductivity. At the heart of the intriguing physics is the anisotropic magnetostriction that leads to exotic states.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>magnetoelastic effect</subject><subject>magnetoresistance</subject><subject>magnetostriction</subject><subject>pressure effects</subject><subject>spin polarization</subject><subject>spin-orbit coupling</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEYhIMoWGr_gYfgfdf3TbIf8aaLX7BQKXouSZrYyJqUTSz237tF8TRzGGaeIeQSoUQEfv2yPaSV3d-VCKLskSGiPCEzJmpZSFnL039fwTlZpPQBAFiDbEDOiOpVzt5Y6gb77bUffD5QH2in-OqLLZsb2sWQxzjQ6KgdrMmjN2qgeVQh7eKY6d4rqoJPcUrtvKGf6j3YHNMxmH0MF-TMqSHZxZ_OydvD_Wv3VPTLx-futi8iIsuFQnWE0qaVTspWo6s2zGjurG6QM80qbYRwSrOm4tVmeiCMAmtraAC5lnxOrn57p2m_TsZna7YmhjAxr7EVLdTAfwBV0lq8</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Zhao, Hengdi</creator><creator>Zheng, Hao</creator><creator>Terzic, Jasminka</creator><creator>Song, Wenhai</creator><creator>Ni, Yifei</creator><creator>Zhang, Yu</creator><creator>Schlottmann, Pedro</creator><creator>Cao, Gang</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000189790405</orcidid><orcidid>https://orcid.org/0000000186689811</orcidid><orcidid>https://orcid.org/0000000346066323</orcidid><orcidid>https://orcid.org/000000019779430X</orcidid></search><sort><creationdate>20210929</creationdate><title>Lattice flexibility in Ca3Ru2O7: Control of electrical transport via anisotropic magnetostriction</title><author>Zhao, Hengdi ; Zheng, Hao ; Terzic, Jasminka ; Song, Wenhai ; Ni, Yifei ; Zhang, Yu ; Schlottmann, Pedro ; Cao, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o112t-a1a1609bc89f998b1f5d2cb3feb7132b25bc44fab27535d0164ca0ee607013b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>magnetoelastic effect</topic><topic>magnetoresistance</topic><topic>magnetostriction</topic><topic>pressure effects</topic><topic>spin polarization</topic><topic>spin-orbit coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hengdi</creatorcontrib><creatorcontrib>Zheng, Hao</creatorcontrib><creatorcontrib>Terzic, Jasminka</creatorcontrib><creatorcontrib>Song, Wenhai</creatorcontrib><creatorcontrib>Ni, Yifei</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Schlottmann, Pedro</creatorcontrib><creatorcontrib>Cao, Gang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hengdi</au><au>Zheng, Hao</au><au>Terzic, Jasminka</au><au>Song, Wenhai</au><au>Ni, Yifei</au><au>Zhang, Yu</au><au>Schlottmann, Pedro</au><au>Cao, Gang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice flexibility in Ca3Ru2O7: Control of electrical transport via anisotropic magnetostriction</atitle><jtitle>Physical review. B</jtitle><date>2021-09-29</date><risdate>2021</risdate><volume>104</volume><issue>12</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report that Ca3Ru2O7 is a correlated and spin-orbit coupled system with an extraordinary anisotropy. It is both interesting and unique largely because this material exhibits conflicting phenomena that are often utterly inconsistent with traditional precedents, particularly, the quantum oscillations in the nonmetallic state and colossal magnetoresistivity achieved by avoiding a fully spin-polarized state. This work focuses on the relationship between the lattice and transport properties along each crystalline axis and reveals that application of magnetic field, H, along different crystalline axes readily stretches or shrinks the lattice in a uniaxial manner, resulting in distinct electronic states. Furthermore, application of modest pressure drastically amplifies the anisotropic magnetoelastic effect, leading to either an occurrence of a robust metallic state at H $∥$ hard axis or a reentrance of the nonmetallic state at H $∥$ easy axis. Ca3Ru2O7 presents a rare lattice-dependent magnetotransport mechanism, in which the extraordinary lattice flexibility enables an exquisite control of the electronic state via magnetically stretching or shrinking the crystalline axes, and the spin polarization plays an unconventional role unfavorable for maximizing conductivity. At the heart of the intriguing physics is the anisotropic magnetostriction that leads to exotic states.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.104.L121119</doi><orcidid>https://orcid.org/0000000189790405</orcidid><orcidid>https://orcid.org/0000000186689811</orcidid><orcidid>https://orcid.org/0000000346066323</orcidid><orcidid>https://orcid.org/000000019779430X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-09, Vol.104 (12)
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1848060
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
magnetoelastic effect
magnetoresistance
magnetostriction
pressure effects
spin polarization
spin-orbit coupling
title Lattice flexibility in Ca3Ru2O7: Control of electrical transport via anisotropic magnetostriction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20flexibility%20in%20Ca3Ru2O7:%20Control%20of%20electrical%20transport%20via%20anisotropic%20magnetostriction&rft.jtitle=Physical%20review.%20B&rft.au=Zhao,%20Hengdi&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-09-29&rft.volume=104&rft.issue=12&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.L121119&rft_dat=%3Costi%3E1848060%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o112t-a1a1609bc89f998b1f5d2cb3feb7132b25bc44fab27535d0164ca0ee607013b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true