Loading…
Voltage-Controlled Magnetic Reversal in Orbital Chern Insulators
Chern insulator ferromagnets are characterized by a quantized anomalous Hall effect and have so far been identified experimentally in magnetically doped topological insulator thin films and in bilayer graphene moiré superlattices. We classify Chern insulator ferromagnets as either spin or orbital, d...
Saved in:
Published in: | Physical review letters 2020-11, Vol.125 (22), p.227702-227702, Article 227702 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chern insulator ferromagnets are characterized by a quantized anomalous Hall effect and have so far been identified experimentally in magnetically doped topological insulator thin films and in bilayer graphene moiré superlattices. We classify Chern insulator ferromagnets as either spin or orbital, depending on whether the orbital magnetization results from spontaneous spin polarization combined with spin-orbit interactions, as in the magnetically doped topological insulator case, or directly from spontaneous orbital currents, as in the moiré superlattice case. We argue that, in a given magnetic state, characterized, for example, by the sign of the anomalous Hall effect, the magnetization of an orbital Chern insulator will often have opposite signs for weak n and weak p electrostatic or chemical doping. This property enables pure electrical switching of a magnetic state in the presence of a fixed magnetic field. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.227702 |