Loading…
Orthogonal Nanoprobes Enabling Two-Color Optical Super-Resolution Microscopy Imaging of the Two Domains of Diblock Copolymer Thin Film Nanocomposites
Multicolor optical super-resolution microscopy (OSRM) describes an emerging set of techniques for the specific labeling of distinct constituents of multicomponent systems with compatible optical probes, elucidating proximity relationships from far-field imaging of diffraction-limited features with n...
Saved in:
Published in: | Chemistry of materials 2021-07, Vol.33 (13), p.5156-5167 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multicolor optical super-resolution microscopy (OSRM) describes an emerging set of techniques for the specific labeling of distinct constituents of multicomponent systems with compatible optical probes, elucidating proximity relationships from far-field imaging of diffraction-limited features with nanometer-scale resolution. While such approaches are well established in the study of biological systems, their implementation in materials science has been considerably slower. In large part, this gradual adoption is due to the lack of appropriate OSRM probes that, e.g., by facile mixing or surface modification, enable orthogonal labeling of specific nanostructures in the condensed state, rather than in aqueous conditions as with biology. Here, OSRM probes in the form of ultrasmall (diameters |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.1c01204 |