Loading…

Magnetic properties of alternating Hubbard ladders

We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite with nonequal or equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb ha...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2021-04, Vol.103 (16), Article 165127
Main Authors: Essalah, Kaouther, Benali, Ali, Abdelwahab, Anas, Jeckelmann, Eric, Scalettar, Richard T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643
cites cdi_FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643
container_end_page
container_issue 16
container_start_page
container_title Physical review. B
container_volume 103
creator Essalah, Kaouther
Benali, Ali
Abdelwahab, Anas
Jeckelmann, Eric
Scalettar, Richard T.
description We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite with nonequal or equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The density matrix renormalization group (DMRG) method is used to obtain the groundstate properties, e.g., excitation gaps, charge and spin densities as well as their correlation functions at half filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long-range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.
doi_str_mv 10.1103/PhysRevB.103.165127
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1851970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524954695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsNT-AjdB14l33p2lFrVCRRFdD5N5tCkxqTNTof_elKirew98HM45CF1iqDAGevO6OaQ3_31XDaLCgmMiT9CEMKFKpYQ6_f85nKNZSlsAwAKUBDVB5NmsO58bW-xiv_MxNz4VfShMm33sTG66dbHc17WJrmiNcz6mC3QWTJv87PdO0cfD_ftiWa5eHp8Wt6vSUqZyKTgDZhwwFcAGJYUxDKBW3NS1x2AoZzIECt7XThIpuFRUCRdcbcg8CEan6Gr07VNudLJN9nZj-67zNms853hoMEDXIzTE_9r7lPW23w_B26QJJ0zxoTofKDpSNvYpRR_0LjafJh40Bn0cUf-NqI9iHJH-ACSqZWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524954695</pqid></control><display><type>article</type><title>Magnetic properties of alternating Hubbard ladders</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Essalah, Kaouther ; Benali, Ali ; Abdelwahab, Anas ; Jeckelmann, Eric ; Scalettar, Richard T.</creator><creatorcontrib>Essalah, Kaouther ; Benali, Ali ; Abdelwahab, Anas ; Jeckelmann, Eric ; Scalettar, Richard T. ; Univ. of California, Davis, CA (United States)</creatorcontrib><description>We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite with nonequal or equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The density matrix renormalization group (DMRG) method is used to obtain the groundstate properties, e.g., excitation gaps, charge and spin densities as well as their correlation functions at half filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long-range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.103.165127</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Charge density ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Density matrix renormalization group ; Ferrimagnetism ; Hubbard model ; Ladders ; Long range order ; Magnetic order ; Magnetic properties ; Magnetism ; Materials Science ; Physics ; Spin liquid ; Strongly correlated systems</subject><ispartof>Physical review. B, 2021-04, Vol.103 (16), Article 165127</ispartof><rights>Copyright American Physical Society Apr 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643</citedby><cites>FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643</cites><orcidid>0000-0001-8344-7657 ; 0000-0002-0150-5938 ; 0000-0002-9271-2800 ; 0000000292712800 ; 0000000183447657 ; 0000000201505938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1851970$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Essalah, Kaouther</creatorcontrib><creatorcontrib>Benali, Ali</creatorcontrib><creatorcontrib>Abdelwahab, Anas</creatorcontrib><creatorcontrib>Jeckelmann, Eric</creatorcontrib><creatorcontrib>Scalettar, Richard T.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><title>Magnetic properties of alternating Hubbard ladders</title><title>Physical review. B</title><description>We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite with nonequal or equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The density matrix renormalization group (DMRG) method is used to obtain the groundstate properties, e.g., excitation gaps, charge and spin densities as well as their correlation functions at half filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long-range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.</description><subject>Charge density</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Density matrix renormalization group</subject><subject>Ferrimagnetism</subject><subject>Hubbard model</subject><subject>Ladders</subject><subject>Long range order</subject><subject>Magnetic order</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Spin liquid</subject><subject>Strongly correlated systems</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsNT-AjdB14l33p2lFrVCRRFdD5N5tCkxqTNTof_elKirew98HM45CF1iqDAGevO6OaQ3_31XDaLCgmMiT9CEMKFKpYQ6_f85nKNZSlsAwAKUBDVB5NmsO58bW-xiv_MxNz4VfShMm33sTG66dbHc17WJrmiNcz6mC3QWTJv87PdO0cfD_ftiWa5eHp8Wt6vSUqZyKTgDZhwwFcAGJYUxDKBW3NS1x2AoZzIECt7XThIpuFRUCRdcbcg8CEan6Gr07VNudLJN9nZj-67zNms853hoMEDXIzTE_9r7lPW23w_B26QJJ0zxoTofKDpSNvYpRR_0LjafJh40Bn0cUf-NqI9iHJH-ACSqZWU</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Essalah, Kaouther</creator><creator>Benali, Ali</creator><creator>Abdelwahab, Anas</creator><creator>Jeckelmann, Eric</creator><creator>Scalettar, Richard T.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8344-7657</orcidid><orcidid>https://orcid.org/0000-0002-0150-5938</orcidid><orcidid>https://orcid.org/0000-0002-9271-2800</orcidid><orcidid>https://orcid.org/0000000292712800</orcidid><orcidid>https://orcid.org/0000000183447657</orcidid><orcidid>https://orcid.org/0000000201505938</orcidid></search><sort><creationdate>20210422</creationdate><title>Magnetic properties of alternating Hubbard ladders</title><author>Essalah, Kaouther ; Benali, Ali ; Abdelwahab, Anas ; Jeckelmann, Eric ; Scalettar, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge density</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Density matrix renormalization group</topic><topic>Ferrimagnetism</topic><topic>Hubbard model</topic><topic>Ladders</topic><topic>Long range order</topic><topic>Magnetic order</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Spin liquid</topic><topic>Strongly correlated systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Essalah, Kaouther</creatorcontrib><creatorcontrib>Benali, Ali</creatorcontrib><creatorcontrib>Abdelwahab, Anas</creatorcontrib><creatorcontrib>Jeckelmann, Eric</creatorcontrib><creatorcontrib>Scalettar, Richard T.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Essalah, Kaouther</au><au>Benali, Ali</au><au>Abdelwahab, Anas</au><au>Jeckelmann, Eric</au><au>Scalettar, Richard T.</au><aucorp>Univ. of California, Davis, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of alternating Hubbard ladders</atitle><jtitle>Physical review. B</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>103</volume><issue>16</issue><artnum>165127</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite with nonequal or equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The density matrix renormalization group (DMRG) method is used to obtain the groundstate properties, e.g., excitation gaps, charge and spin densities as well as their correlation functions at half filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long-range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.103.165127</doi><orcidid>https://orcid.org/0000-0001-8344-7657</orcidid><orcidid>https://orcid.org/0000-0002-0150-5938</orcidid><orcidid>https://orcid.org/0000-0002-9271-2800</orcidid><orcidid>https://orcid.org/0000000292712800</orcidid><orcidid>https://orcid.org/0000000183447657</orcidid><orcidid>https://orcid.org/0000000201505938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-04, Vol.103 (16), Article 165127
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1851970
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Charge density
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Density matrix renormalization group
Ferrimagnetism
Hubbard model
Ladders
Long range order
Magnetic order
Magnetic properties
Magnetism
Materials Science
Physics
Spin liquid
Strongly correlated systems
title Magnetic properties of alternating Hubbard ladders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20alternating%20Hubbard%20ladders&rft.jtitle=Physical%20review.%20B&rft.au=Essalah,%20Kaouther&rft.aucorp=Univ.%20of%20California,%20Davis,%20CA%20(United%20States)&rft.date=2021-04-22&rft.volume=103&rft.issue=16&rft.artnum=165127&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.103.165127&rft_dat=%3Cproquest_osti_%3E2524954695%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-65404ad049f0cf976aa400b95abbe10a3547ff30eebd7276579396dfdba28f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524954695&rft_id=info:pmid/&rfr_iscdi=true