Loading…
Conservation laws in coupled cluster dynamics at finite temperature
We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservatio...
Saved in:
Published in: | The Journal of chemical physics 2021-07, Vol.155 (4) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 155 |
creator | Peng, Ruojing White, Alec F. Zhai, Huanchen Kin-Lic Chan, Garnet |
description | We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1852512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852512</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18525123</originalsourceid><addsrcrecordid>eNqNyksKwjAQANAgCtbPHYL7wiTa37ooHsB9CekUI2lSMlPF2-vCA7h6m7cQmYK6yauygaXIALTKmxLKtdgQPQBAVfqUibaNgTA9DbsYpDcvki5IG-fJYy-tn4kxyf4dzOgsScNycMExSsZxwmR4TrgTq8F4wv3PrThczrf2mkdi15H9dnu3MQS03Km60IXSx7_SB9rtPBs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conservation laws in coupled cluster dynamics at finite temperature</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Peng, Ruojing ; White, Alec F. ; Zhai, Huanchen ; Kin-Lic Chan, Garnet</creator><creatorcontrib>Peng, Ruojing ; White, Alec F. ; Zhai, Huanchen ; Kin-Lic Chan, Garnet ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>astrodynamics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; cluster dynamics ; coupled-cluster methods ; density matrix renormalization group ; Ehrenfest theorem ; exchange interactions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; many body problems ; many electron systems ; operator theory ; particle properties</subject><ispartof>The Journal of chemical physics, 2021-07, Vol.155 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000252937503 ; 0000000180096038 ; 0000000297431469 ; 0000000300860388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852512$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Ruojing</creatorcontrib><creatorcontrib>White, Alec F.</creatorcontrib><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Kin-Lic Chan, Garnet</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Conservation laws in coupled cluster dynamics at finite temperature</title><title>The Journal of chemical physics</title><description>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</description><subject>astrodynamics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>cluster dynamics</subject><subject>coupled-cluster methods</subject><subject>density matrix renormalization group</subject><subject>Ehrenfest theorem</subject><subject>exchange interactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>many body problems</subject><subject>many electron systems</subject><subject>operator theory</subject><subject>particle properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyksKwjAQANAgCtbPHYL7wiTa37ooHsB9CekUI2lSMlPF2-vCA7h6m7cQmYK6yauygaXIALTKmxLKtdgQPQBAVfqUibaNgTA9DbsYpDcvki5IG-fJYy-tn4kxyf4dzOgsScNycMExSsZxwmR4TrgTq8F4wv3PrThczrf2mkdi15H9dnu3MQS03Km60IXSx7_SB9rtPBs</recordid><startdate>20210726</startdate><enddate>20210726</enddate><creator>Peng, Ruojing</creator><creator>White, Alec F.</creator><creator>Zhai, Huanchen</creator><creator>Kin-Lic Chan, Garnet</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000252937503</orcidid><orcidid>https://orcid.org/0000000180096038</orcidid><orcidid>https://orcid.org/0000000297431469</orcidid><orcidid>https://orcid.org/0000000300860388</orcidid></search><sort><creationdate>20210726</creationdate><title>Conservation laws in coupled cluster dynamics at finite temperature</title><author>Peng, Ruojing ; White, Alec F. ; Zhai, Huanchen ; Kin-Lic Chan, Garnet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18525123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>astrodynamics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>cluster dynamics</topic><topic>coupled-cluster methods</topic><topic>density matrix renormalization group</topic><topic>Ehrenfest theorem</topic><topic>exchange interactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>many body problems</topic><topic>many electron systems</topic><topic>operator theory</topic><topic>particle properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ruojing</creatorcontrib><creatorcontrib>White, Alec F.</creatorcontrib><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Kin-Lic Chan, Garnet</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ruojing</au><au>White, Alec F.</au><au>Zhai, Huanchen</au><au>Kin-Lic Chan, Garnet</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws in coupled cluster dynamics at finite temperature</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-07-26</date><risdate>2021</risdate><volume>155</volume><issue>4</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000252937503</orcidid><orcidid>https://orcid.org/0000000180096038</orcidid><orcidid>https://orcid.org/0000000297431469</orcidid><orcidid>https://orcid.org/0000000300860388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-07, Vol.155 (4) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1852512 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | astrodynamics CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS cluster dynamics coupled-cluster methods density matrix renormalization group Ehrenfest theorem exchange interactions INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY many body problems many electron systems operator theory particle properties |
title | Conservation laws in coupled cluster dynamics at finite temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20in%20coupled%20cluster%20dynamics%20at%20finite%20temperature&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Peng,%20Ruojing&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2021-07-26&rft.volume=155&rft.issue=4&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/&rft_dat=%3Costi%3E1852512%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18525123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |