Loading…

Conservation laws in coupled cluster dynamics at finite temperature

We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservatio...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-07, Vol.155 (4)
Main Authors: Peng, Ruojing, White, Alec F., Zhai, Huanchen, Kin-Lic Chan, Garnet
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page
container_title The Journal of chemical physics
container_volume 155
creator Peng, Ruojing
White, Alec F.
Zhai, Huanchen
Kin-Lic Chan, Garnet
description We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1852512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852512</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18525123</originalsourceid><addsrcrecordid>eNqNyksKwjAQANAgCtbPHYL7wiTa37ooHsB9CekUI2lSMlPF2-vCA7h6m7cQmYK6yauygaXIALTKmxLKtdgQPQBAVfqUibaNgTA9DbsYpDcvki5IG-fJYy-tn4kxyf4dzOgsScNycMExSsZxwmR4TrgTq8F4wv3PrThczrf2mkdi15H9dnu3MQS03Km60IXSx7_SB9rtPBs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conservation laws in coupled cluster dynamics at finite temperature</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Peng, Ruojing ; White, Alec F. ; Zhai, Huanchen ; Kin-Lic Chan, Garnet</creator><creatorcontrib>Peng, Ruojing ; White, Alec F. ; Zhai, Huanchen ; Kin-Lic Chan, Garnet ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>astrodynamics ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; cluster dynamics ; coupled-cluster methods ; density matrix renormalization group ; Ehrenfest theorem ; exchange interactions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; many body problems ; many electron systems ; operator theory ; particle properties</subject><ispartof>The Journal of chemical physics, 2021-07, Vol.155 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000252937503 ; 0000000180096038 ; 0000000297431469 ; 0000000300860388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1852512$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Ruojing</creatorcontrib><creatorcontrib>White, Alec F.</creatorcontrib><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Kin-Lic Chan, Garnet</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Conservation laws in coupled cluster dynamics at finite temperature</title><title>The Journal of chemical physics</title><description>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</description><subject>astrodynamics</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>cluster dynamics</subject><subject>coupled-cluster methods</subject><subject>density matrix renormalization group</subject><subject>Ehrenfest theorem</subject><subject>exchange interactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>many body problems</subject><subject>many electron systems</subject><subject>operator theory</subject><subject>particle properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNyksKwjAQANAgCtbPHYL7wiTa37ooHsB9CekUI2lSMlPF2-vCA7h6m7cQmYK6yauygaXIALTKmxLKtdgQPQBAVfqUibaNgTA9DbsYpDcvki5IG-fJYy-tn4kxyf4dzOgsScNycMExSsZxwmR4TrgTq8F4wv3PrThczrf2mkdi15H9dnu3MQS03Km60IXSx7_SB9rtPBs</recordid><startdate>20210726</startdate><enddate>20210726</enddate><creator>Peng, Ruojing</creator><creator>White, Alec F.</creator><creator>Zhai, Huanchen</creator><creator>Kin-Lic Chan, Garnet</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000252937503</orcidid><orcidid>https://orcid.org/0000000180096038</orcidid><orcidid>https://orcid.org/0000000297431469</orcidid><orcidid>https://orcid.org/0000000300860388</orcidid></search><sort><creationdate>20210726</creationdate><title>Conservation laws in coupled cluster dynamics at finite temperature</title><author>Peng, Ruojing ; White, Alec F. ; Zhai, Huanchen ; Kin-Lic Chan, Garnet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18525123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>astrodynamics</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>cluster dynamics</topic><topic>coupled-cluster methods</topic><topic>density matrix renormalization group</topic><topic>Ehrenfest theorem</topic><topic>exchange interactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>many body problems</topic><topic>many electron systems</topic><topic>operator theory</topic><topic>particle properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ruojing</creatorcontrib><creatorcontrib>White, Alec F.</creatorcontrib><creatorcontrib>Zhai, Huanchen</creatorcontrib><creatorcontrib>Kin-Lic Chan, Garnet</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ruojing</au><au>White, Alec F.</au><au>Zhai, Huanchen</au><au>Kin-Lic Chan, Garnet</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws in coupled cluster dynamics at finite temperature</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-07-26</date><risdate>2021</risdate><volume>155</volume><issue>4</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137–6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest’s theorem) for all one-particle properties while remaining energy conserving for time independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of nonequilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000252937503</orcidid><orcidid>https://orcid.org/0000000180096038</orcidid><orcidid>https://orcid.org/0000000297431469</orcidid><orcidid>https://orcid.org/0000000300860388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-07, Vol.155 (4)
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1852512
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects astrodynamics
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
cluster dynamics
coupled-cluster methods
density matrix renormalization group
Ehrenfest theorem
exchange interactions
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
many body problems
many electron systems
operator theory
particle properties
title Conservation laws in coupled cluster dynamics at finite temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20in%20coupled%20cluster%20dynamics%20at%20finite%20temperature&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Peng,%20Ruojing&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2021-07-26&rft.volume=155&rft.issue=4&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/&rft_dat=%3Costi%3E1852512%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18525123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true