Loading…
Mixed-State Entanglement from Local Randomized Measurements
We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framewor...
Saved in:
Published in: | Physical review letters 2020-11, Vol.125 (20), p.200501, Article 200501 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3 |
container_end_page | |
container_issue | 20 |
container_start_page | 200501 |
container_title | Physical review letters |
container_volume | 125 |
creator | Elben, Andreas Kueng, Richard Huang, Hsin-Yuan Robert van Bijnen, Rick Kokail, Christian Dalmonte, Marcello Calabrese, Pasquale Kraus, Barbara Preskill, John Zoller, Peter Vermersch, Benoît |
description | We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963]. |
doi_str_mv | 10.1103/PhysRevLett.125.200501 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466036574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</originalsourceid><addsrcrecordid>eNpd0V1r1UAQBuBFFHus_oUS9MZe5DizH_nAq1JaW0hRql4vm91ZT0qSrdlNsf315phaxKuB4ZlhhpexI4QtIogPX3b38ZruGkppi1xtOYACfMY2CGWdl4jyOdsACMxrgPKAvYrxBgCQF9VLdiAEV1Wh5IZ9vOp-kcu_JpMoOxuTGX_0NNCYMj-FIWuCNX12bUYXhu6BXHZFJs7THxFfsxfe9JHePNZD9v387NvpRd58_nR5etLkdjkp5QbLwnErlUBRAlrRVh5Vi7S0ZO0sWim5coBeenJKttK2hVfOe6qkE1Ycsrfr3hBTp6PtEtmdDeNINmmslFBKLOh4RTvT69upG8x0r4Pp9MVJo_c94DXnHPkdLvb9am-n8HOmmPTQRUt9b0YKc9RcFgWIQpVyoe_-ozdhnsbl3b2qK4mS80UVq7JTiHEi_3QBgt7npf_JSy956TWvZfDocf3cDuSexv4GJH4DoMSRfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469841422</pqid></control><display><type>article</type><title>Mixed-State Entanglement from Local Randomized Measurements</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Elben, Andreas ; Kueng, Richard ; Huang, Hsin-Yuan Robert ; van Bijnen, Rick ; Kokail, Christian ; Dalmonte, Marcello ; Calabrese, Pasquale ; Kraus, Barbara ; Preskill, John ; Zoller, Peter ; Vermersch, Benoît</creator><creatorcontrib>Elben, Andreas ; Kueng, Richard ; Huang, Hsin-Yuan Robert ; van Bijnen, Rick ; Kokail, Christian ; Dalmonte, Marcello ; Calabrese, Pasquale ; Kraus, Barbara ; Preskill, John ; Zoller, Peter ; Vermersch, Benoît ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.200501</identifier><identifier>PMID: 33258654</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>1-dimensional spin chains ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Science ; Entanglement detection ; General Physics ; Mathematical Physics ; Physics ; Quantum entanglement ; Quantum simulation ; Quantum spin chains ; Quantum theory ; Quasiparticles & collective excitations ; Qubits (quantum computing) ; XY model</subject><ispartof>Physical review letters, 2020-11, Vol.125 (20), p.200501, Article 200501</ispartof><rights>Copyright American Physical Society Nov 13, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</citedby><cites>FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</cites><orcidid>0000-0003-1444-6356 ; 0000-0002-0979-2521 ; 0000-0002-2421-4762 ; 0000-0001-6781-2079 ; 0000-0001-5317-2613 ; 0000-0001-7246-6385 ; 0000000209792521 ; 0000000172466385 ; 0000000167812079 ; 0000000314446356 ; 0000000153172613 ; 0000000224214762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33258654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02922212$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853553$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elben, Andreas</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Huang, Hsin-Yuan Robert</creatorcontrib><creatorcontrib>van Bijnen, Rick</creatorcontrib><creatorcontrib>Kokail, Christian</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><creatorcontrib>Kraus, Barbara</creatorcontrib><creatorcontrib>Preskill, John</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><creatorcontrib>Vermersch, Benoît</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Mixed-State Entanglement from Local Randomized Measurements</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].</description><subject>1-dimensional spin chains</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Science</subject><subject>Entanglement detection</subject><subject>General Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>Quantum simulation</subject><subject>Quantum spin chains</subject><subject>Quantum theory</subject><subject>Quasiparticles & collective excitations</subject><subject>Qubits (quantum computing)</subject><subject>XY model</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0V1r1UAQBuBFFHus_oUS9MZe5DizH_nAq1JaW0hRql4vm91ZT0qSrdlNsf315phaxKuB4ZlhhpexI4QtIogPX3b38ZruGkppi1xtOYACfMY2CGWdl4jyOdsACMxrgPKAvYrxBgCQF9VLdiAEV1Wh5IZ9vOp-kcu_JpMoOxuTGX_0NNCYMj-FIWuCNX12bUYXhu6BXHZFJs7THxFfsxfe9JHePNZD9v387NvpRd58_nR5etLkdjkp5QbLwnErlUBRAlrRVh5Vi7S0ZO0sWim5coBeenJKttK2hVfOe6qkE1Ycsrfr3hBTp6PtEtmdDeNINmmslFBKLOh4RTvT69upG8x0r4Pp9MVJo_c94DXnHPkdLvb9am-n8HOmmPTQRUt9b0YKc9RcFgWIQpVyoe_-ozdhnsbl3b2qK4mS80UVq7JTiHEi_3QBgt7npf_JSy956TWvZfDocf3cDuSexv4GJH4DoMSRfw</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>Elben, Andreas</creator><creator>Kueng, Richard</creator><creator>Huang, Hsin-Yuan Robert</creator><creator>van Bijnen, Rick</creator><creator>Kokail, Christian</creator><creator>Dalmonte, Marcello</creator><creator>Calabrese, Pasquale</creator><creator>Kraus, Barbara</creator><creator>Preskill, John</creator><creator>Zoller, Peter</creator><creator>Vermersch, Benoît</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1444-6356</orcidid><orcidid>https://orcid.org/0000-0002-0979-2521</orcidid><orcidid>https://orcid.org/0000-0002-2421-4762</orcidid><orcidid>https://orcid.org/0000-0001-6781-2079</orcidid><orcidid>https://orcid.org/0000-0001-5317-2613</orcidid><orcidid>https://orcid.org/0000-0001-7246-6385</orcidid><orcidid>https://orcid.org/0000000209792521</orcidid><orcidid>https://orcid.org/0000000172466385</orcidid><orcidid>https://orcid.org/0000000167812079</orcidid><orcidid>https://orcid.org/0000000314446356</orcidid><orcidid>https://orcid.org/0000000153172613</orcidid><orcidid>https://orcid.org/0000000224214762</orcidid></search><sort><creationdate>20201113</creationdate><title>Mixed-State Entanglement from Local Randomized Measurements</title><author>Elben, Andreas ; Kueng, Richard ; Huang, Hsin-Yuan Robert ; van Bijnen, Rick ; Kokail, Christian ; Dalmonte, Marcello ; Calabrese, Pasquale ; Kraus, Barbara ; Preskill, John ; Zoller, Peter ; Vermersch, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-dimensional spin chains</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Science</topic><topic>Entanglement detection</topic><topic>General Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>Quantum simulation</topic><topic>Quantum spin chains</topic><topic>Quantum theory</topic><topic>Quasiparticles & collective excitations</topic><topic>Qubits (quantum computing)</topic><topic>XY model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elben, Andreas</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Huang, Hsin-Yuan Robert</creatorcontrib><creatorcontrib>van Bijnen, Rick</creatorcontrib><creatorcontrib>Kokail, Christian</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><creatorcontrib>Kraus, Barbara</creatorcontrib><creatorcontrib>Preskill, John</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><creatorcontrib>Vermersch, Benoît</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elben, Andreas</au><au>Kueng, Richard</au><au>Huang, Hsin-Yuan Robert</au><au>van Bijnen, Rick</au><au>Kokail, Christian</au><au>Dalmonte, Marcello</au><au>Calabrese, Pasquale</au><au>Kraus, Barbara</au><au>Preskill, John</au><au>Zoller, Peter</au><au>Vermersch, Benoît</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-State Entanglement from Local Randomized Measurements</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-11-13</date><risdate>2020</risdate><volume>125</volume><issue>20</issue><spage>200501</spage><pages>200501-</pages><artnum>200501</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33258654</pmid><doi>10.1103/PhysRevLett.125.200501</doi><orcidid>https://orcid.org/0000-0003-1444-6356</orcidid><orcidid>https://orcid.org/0000-0002-0979-2521</orcidid><orcidid>https://orcid.org/0000-0002-2421-4762</orcidid><orcidid>https://orcid.org/0000-0001-6781-2079</orcidid><orcidid>https://orcid.org/0000-0001-5317-2613</orcidid><orcidid>https://orcid.org/0000-0001-7246-6385</orcidid><orcidid>https://orcid.org/0000000209792521</orcidid><orcidid>https://orcid.org/0000000172466385</orcidid><orcidid>https://orcid.org/0000000167812079</orcidid><orcidid>https://orcid.org/0000000314446356</orcidid><orcidid>https://orcid.org/0000000153172613</orcidid><orcidid>https://orcid.org/0000000224214762</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-11, Vol.125 (20), p.200501, Article 200501 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1853553 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | 1-dimensional spin chains CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computer Science Entanglement detection General Physics Mathematical Physics Physics Quantum entanglement Quantum simulation Quantum spin chains Quantum theory Quasiparticles & collective excitations Qubits (quantum computing) XY model |
title | Mixed-State Entanglement from Local Randomized Measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-State%20Entanglement%20from%20Local%20Randomized%20Measurements&rft.jtitle=Physical%20review%20letters&rft.au=Elben,%20Andreas&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2020-11-13&rft.volume=125&rft.issue=20&rft.spage=200501&rft.pages=200501-&rft.artnum=200501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.200501&rft_dat=%3Cproquest_osti_%3E2466036574%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469841422&rft_id=info:pmid/33258654&rfr_iscdi=true |