Loading…

Mixed-State Entanglement from Local Randomized Measurements

We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framewor...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-11, Vol.125 (20), p.200501, Article 200501
Main Authors: Elben, Andreas, Kueng, Richard, Huang, Hsin-Yuan Robert, van Bijnen, Rick, Kokail, Christian, Dalmonte, Marcello, Calabrese, Pasquale, Kraus, Barbara, Preskill, John, Zoller, Peter, Vermersch, Benoît
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3
cites cdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3
container_end_page
container_issue 20
container_start_page 200501
container_title Physical review letters
container_volume 125
creator Elben, Andreas
Kueng, Richard
Huang, Hsin-Yuan Robert
van Bijnen, Rick
Kokail, Christian
Dalmonte, Marcello
Calabrese, Pasquale
Kraus, Barbara
Preskill, John
Zoller, Peter
Vermersch, Benoît
description We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].
doi_str_mv 10.1103/PhysRevLett.125.200501
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1853553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466036574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</originalsourceid><addsrcrecordid>eNpd0V1r1UAQBuBFFHus_oUS9MZe5DizH_nAq1JaW0hRql4vm91ZT0qSrdlNsf315phaxKuB4ZlhhpexI4QtIogPX3b38ZruGkppi1xtOYACfMY2CGWdl4jyOdsACMxrgPKAvYrxBgCQF9VLdiAEV1Wh5IZ9vOp-kcu_JpMoOxuTGX_0NNCYMj-FIWuCNX12bUYXhu6BXHZFJs7THxFfsxfe9JHePNZD9v387NvpRd58_nR5etLkdjkp5QbLwnErlUBRAlrRVh5Vi7S0ZO0sWim5coBeenJKttK2hVfOe6qkE1Ycsrfr3hBTp6PtEtmdDeNINmmslFBKLOh4RTvT69upG8x0r4Pp9MVJo_c94DXnHPkdLvb9am-n8HOmmPTQRUt9b0YKc9RcFgWIQpVyoe_-ozdhnsbl3b2qK4mS80UVq7JTiHEi_3QBgt7npf_JSy956TWvZfDocf3cDuSexv4GJH4DoMSRfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469841422</pqid></control><display><type>article</type><title>Mixed-State Entanglement from Local Randomized Measurements</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Elben, Andreas ; Kueng, Richard ; Huang, Hsin-Yuan Robert ; van Bijnen, Rick ; Kokail, Christian ; Dalmonte, Marcello ; Calabrese, Pasquale ; Kraus, Barbara ; Preskill, John ; Zoller, Peter ; Vermersch, Benoît</creator><creatorcontrib>Elben, Andreas ; Kueng, Richard ; Huang, Hsin-Yuan Robert ; van Bijnen, Rick ; Kokail, Christian ; Dalmonte, Marcello ; Calabrese, Pasquale ; Kraus, Barbara ; Preskill, John ; Zoller, Peter ; Vermersch, Benoît ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.200501</identifier><identifier>PMID: 33258654</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>1-dimensional spin chains ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computer Science ; Entanglement detection ; General Physics ; Mathematical Physics ; Physics ; Quantum entanglement ; Quantum simulation ; Quantum spin chains ; Quantum theory ; Quasiparticles &amp; collective excitations ; Qubits (quantum computing) ; XY model</subject><ispartof>Physical review letters, 2020-11, Vol.125 (20), p.200501, Article 200501</ispartof><rights>Copyright American Physical Society Nov 13, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</citedby><cites>FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</cites><orcidid>0000-0003-1444-6356 ; 0000-0002-0979-2521 ; 0000-0002-2421-4762 ; 0000-0001-6781-2079 ; 0000-0001-5317-2613 ; 0000-0001-7246-6385 ; 0000000209792521 ; 0000000172466385 ; 0000000167812079 ; 0000000314446356 ; 0000000153172613 ; 0000000224214762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33258654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02922212$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1853553$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elben, Andreas</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Huang, Hsin-Yuan Robert</creatorcontrib><creatorcontrib>van Bijnen, Rick</creatorcontrib><creatorcontrib>Kokail, Christian</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><creatorcontrib>Kraus, Barbara</creatorcontrib><creatorcontrib>Preskill, John</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><creatorcontrib>Vermersch, Benoît</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Mixed-State Entanglement from Local Randomized Measurements</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].</description><subject>1-dimensional spin chains</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computer Science</subject><subject>Entanglement detection</subject><subject>General Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>Quantum simulation</subject><subject>Quantum spin chains</subject><subject>Quantum theory</subject><subject>Quasiparticles &amp; collective excitations</subject><subject>Qubits (quantum computing)</subject><subject>XY model</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0V1r1UAQBuBFFHus_oUS9MZe5DizH_nAq1JaW0hRql4vm91ZT0qSrdlNsf315phaxKuB4ZlhhpexI4QtIogPX3b38ZruGkppi1xtOYACfMY2CGWdl4jyOdsACMxrgPKAvYrxBgCQF9VLdiAEV1Wh5IZ9vOp-kcu_JpMoOxuTGX_0NNCYMj-FIWuCNX12bUYXhu6BXHZFJs7THxFfsxfe9JHePNZD9v387NvpRd58_nR5etLkdjkp5QbLwnErlUBRAlrRVh5Vi7S0ZO0sWim5coBeenJKttK2hVfOe6qkE1Ycsrfr3hBTp6PtEtmdDeNINmmslFBKLOh4RTvT69upG8x0r4Pp9MVJo_c94DXnHPkdLvb9am-n8HOmmPTQRUt9b0YKc9RcFgWIQpVyoe_-ozdhnsbl3b2qK4mS80UVq7JTiHEi_3QBgt7npf_JSy956TWvZfDocf3cDuSexv4GJH4DoMSRfw</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>Elben, Andreas</creator><creator>Kueng, Richard</creator><creator>Huang, Hsin-Yuan Robert</creator><creator>van Bijnen, Rick</creator><creator>Kokail, Christian</creator><creator>Dalmonte, Marcello</creator><creator>Calabrese, Pasquale</creator><creator>Kraus, Barbara</creator><creator>Preskill, John</creator><creator>Zoller, Peter</creator><creator>Vermersch, Benoît</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1444-6356</orcidid><orcidid>https://orcid.org/0000-0002-0979-2521</orcidid><orcidid>https://orcid.org/0000-0002-2421-4762</orcidid><orcidid>https://orcid.org/0000-0001-6781-2079</orcidid><orcidid>https://orcid.org/0000-0001-5317-2613</orcidid><orcidid>https://orcid.org/0000-0001-7246-6385</orcidid><orcidid>https://orcid.org/0000000209792521</orcidid><orcidid>https://orcid.org/0000000172466385</orcidid><orcidid>https://orcid.org/0000000167812079</orcidid><orcidid>https://orcid.org/0000000314446356</orcidid><orcidid>https://orcid.org/0000000153172613</orcidid><orcidid>https://orcid.org/0000000224214762</orcidid></search><sort><creationdate>20201113</creationdate><title>Mixed-State Entanglement from Local Randomized Measurements</title><author>Elben, Andreas ; Kueng, Richard ; Huang, Hsin-Yuan Robert ; van Bijnen, Rick ; Kokail, Christian ; Dalmonte, Marcello ; Calabrese, Pasquale ; Kraus, Barbara ; Preskill, John ; Zoller, Peter ; Vermersch, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-dimensional spin chains</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computer Science</topic><topic>Entanglement detection</topic><topic>General Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>Quantum simulation</topic><topic>Quantum spin chains</topic><topic>Quantum theory</topic><topic>Quasiparticles &amp; collective excitations</topic><topic>Qubits (quantum computing)</topic><topic>XY model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elben, Andreas</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Huang, Hsin-Yuan Robert</creatorcontrib><creatorcontrib>van Bijnen, Rick</creatorcontrib><creatorcontrib>Kokail, Christian</creatorcontrib><creatorcontrib>Dalmonte, Marcello</creatorcontrib><creatorcontrib>Calabrese, Pasquale</creatorcontrib><creatorcontrib>Kraus, Barbara</creatorcontrib><creatorcontrib>Preskill, John</creatorcontrib><creatorcontrib>Zoller, Peter</creatorcontrib><creatorcontrib>Vermersch, Benoît</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elben, Andreas</au><au>Kueng, Richard</au><au>Huang, Hsin-Yuan Robert</au><au>van Bijnen, Rick</au><au>Kokail, Christian</au><au>Dalmonte, Marcello</au><au>Calabrese, Pasquale</au><au>Kraus, Barbara</au><au>Preskill, John</au><au>Zoller, Peter</au><au>Vermersch, Benoît</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-State Entanglement from Local Randomized Measurements</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-11-13</date><risdate>2020</risdate><volume>125</volume><issue>20</issue><spage>200501</spage><pages>200501-</pages><artnum>200501</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33258654</pmid><doi>10.1103/PhysRevLett.125.200501</doi><orcidid>https://orcid.org/0000-0003-1444-6356</orcidid><orcidid>https://orcid.org/0000-0002-0979-2521</orcidid><orcidid>https://orcid.org/0000-0002-2421-4762</orcidid><orcidid>https://orcid.org/0000-0001-6781-2079</orcidid><orcidid>https://orcid.org/0000-0001-5317-2613</orcidid><orcidid>https://orcid.org/0000-0001-7246-6385</orcidid><orcidid>https://orcid.org/0000000209792521</orcidid><orcidid>https://orcid.org/0000000172466385</orcidid><orcidid>https://orcid.org/0000000167812079</orcidid><orcidid>https://orcid.org/0000000314446356</orcidid><orcidid>https://orcid.org/0000000153172613</orcidid><orcidid>https://orcid.org/0000000224214762</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-11, Vol.125 (20), p.200501, Article 200501
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_osti_scitechconnect_1853553
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects 1-dimensional spin chains
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer Science
Entanglement detection
General Physics
Mathematical Physics
Physics
Quantum entanglement
Quantum simulation
Quantum spin chains
Quantum theory
Quasiparticles & collective excitations
Qubits (quantum computing)
XY model
title Mixed-State Entanglement from Local Randomized Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-State%20Entanglement%20from%20Local%20Randomized%20Measurements&rft.jtitle=Physical%20review%20letters&rft.au=Elben,%20Andreas&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2020-11-13&rft.volume=125&rft.issue=20&rft.spage=200501&rft.pages=200501-&rft.artnum=200501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.200501&rft_dat=%3Cproquest_osti_%3E2466036574%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-a176d2c45313701c3b8f15b1ec4549dc1c4425d01f4fed54b4cb6f5dffe84d3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469841422&rft_id=info:pmid/33258654&rfr_iscdi=true