Loading…

Neutrino up-scattering via the dipole portal at forward LHC detectors

The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at emulsion and liquid argon experiments that could be...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2022-03, Vol.105 (5), Article 055008
Main Authors: Ismail, Ahmed, Jana, Sudip, Mammen Abraham, Roshan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The significant neutrino flux at high rapidity at the LHC motivates dedicated forward detectors to study the properties of neutrinos at TeV energies. We investigate magnetic dipole interactions between the active neutrinos and new sterile states at emulsion and liquid argon experiments that could be located in a future Forward Physics Facility (FPF) downstream of the ATLAS interaction point. The up-scattering of neutrinos off electrons produces an electron recoil signature that can probe new regions of parameter space at the High Luminosity LHC (HL-LHC), particularly for liquid argon detectors due to low momentum thresholds. We also consider the decay of the sterile neutrino through the dipole operator, which leads to a photon that could be displaced from the production vertex. FPF detectors can test sterile neutrino states as heavy as 1 GeV produced through the dipole portal, highlighting the use of high energy LHC neutrinos as probes of new physics.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.105.055008