Loading…

Energy scaling beyond the gas ionization threshold with divided-pulse nonlinear compression

We demonstrate how pulse energy in hollow-core fiber can be scaled beyond gas-ionization limitations using divided-pulse nonlinear compression. With one pulse, ionization limits our fiber's output pulse energy to 2.7 mJ at an input of 4 mJ. By dividing the pulse to four low-energy pulses before...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2022-03, Vol.47 (6), p.1450-1453
Main Authors: Jenkins, G W, Feng, C, Bromage, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate how pulse energy in hollow-core fiber can be scaled beyond gas-ionization limitations using divided-pulse nonlinear compression. With one pulse, ionization limits our fiber's output pulse energy to 2.7 mJ at an input of 4 mJ. By dividing the pulse to four low-energy pulses before the fiber, we eliminated the ionization and scaled the pulse energy 2.5Ă— to 6.6 mJ at an input energy of 10 mJ. Larger energy scaling is possible, as our maximum pulse energy has not reached the new gas ionization threshold. Our results motivate applying the method to state-of-the-art systems for large pulse energy scaling without prohibitive system size increases.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.451323