Loading…
Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction
Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs thro...
Saved in:
Published in: | Advanced energy materials 2021-09, Vol.11 (40) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 40 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Khan, Kishwar Liu, Tangchao Arif, Muhammad Yan, Xingxu Hossain, Md Delowar Rehman, Faisal Zhou, Sheng Yang, Jing Sun, Chengjun Bae, Sang‐Hoon Kim, Jeehwan Amine, Khalil Pan, Xiaoqing Luo, Zhengtang |
description | Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1854518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854518</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18545183</originalsourceid><addsrcrecordid>eNqNisGKwjAURYM4oKj_ENwHmmmVzlJErSAMjO7lkbzRDDGvJK9q_14L4nru5lzOvT0x1HNdqHlZZP13zz8HYpLSX_ZM8aWzPB-KsIOEUW1jBOuA0cqKPLZyE6E-Y0C1b-qaYjfsXTh5VAumi1wCg28TS6YbRJtk1dpIJwxydSXfsKMgIVj5fW87-YO2MZ0ci49f8AknL47EdL06LCtFid0xGcdozoZCQMNHXc6KmS7zf50ekWlMXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><source>Wiley</source><creator>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</creator><creatorcontrib>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>dangling bonds ; grand canonical potential kinetics ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; laser irradiation ; nanocarbon support ; porous structures ; single-atom catalysts</subject><ispartof>Advanced energy materials, 2021-09, Vol.11 (40)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000251349240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1854518$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Kishwar</creatorcontrib><creatorcontrib>Liu, Tangchao</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Rehman, Faisal</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Bae, Sang‐Hoon</creatorcontrib><creatorcontrib>Kim, Jeehwan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><title>Advanced energy materials</title><description>Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.</description><subject>dangling bonds</subject><subject>grand canonical potential kinetics</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>laser irradiation</subject><subject>nanocarbon support</subject><subject>porous structures</subject><subject>single-atom catalysts</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNisGKwjAURYM4oKj_ENwHmmmVzlJErSAMjO7lkbzRDDGvJK9q_14L4nru5lzOvT0x1HNdqHlZZP13zz8HYpLSX_ZM8aWzPB-KsIOEUW1jBOuA0cqKPLZyE6E-Y0C1b-qaYjfsXTh5VAumi1wCg28TS6YbRJtk1dpIJwxydSXfsKMgIVj5fW87-YO2MZ0ci49f8AknL47EdL06LCtFid0xGcdozoZCQMNHXc6KmS7zf50ekWlMXg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Khan, Kishwar</creator><creator>Liu, Tangchao</creator><creator>Arif, Muhammad</creator><creator>Yan, Xingxu</creator><creator>Hossain, Md Delowar</creator><creator>Rehman, Faisal</creator><creator>Zhou, Sheng</creator><creator>Yang, Jing</creator><creator>Sun, Chengjun</creator><creator>Bae, Sang‐Hoon</creator><creator>Kim, Jeehwan</creator><creator>Amine, Khalil</creator><creator>Pan, Xiaoqing</creator><creator>Luo, Zhengtang</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000251349240</orcidid></search><sort><creationdate>20210915</creationdate><title>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><author>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18545183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>dangling bonds</topic><topic>grand canonical potential kinetics</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>laser irradiation</topic><topic>nanocarbon support</topic><topic>porous structures</topic><topic>single-atom catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Kishwar</creatorcontrib><creatorcontrib>Liu, Tangchao</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Rehman, Faisal</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Bae, Sang‐Hoon</creatorcontrib><creatorcontrib>Kim, Jeehwan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Kishwar</au><au>Liu, Tangchao</au><au>Arif, Muhammad</au><au>Yan, Xingxu</au><au>Hossain, Md Delowar</au><au>Rehman, Faisal</au><au>Zhou, Sheng</au><au>Yang, Jing</au><au>Sun, Chengjun</au><au>Bae, Sang‐Hoon</au><au>Kim, Jeehwan</au><au>Amine, Khalil</au><au>Pan, Xiaoqing</au><au>Luo, Zhengtang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</atitle><jtitle>Advanced energy materials</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>11</volume><issue>40</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000251349240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-09, Vol.11 (40) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1854518 |
source | Wiley |
subjects | dangling bonds grand canonical potential kinetics INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY laser irradiation nanocarbon support porous structures single-atom catalysts |
title | Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Irradiated%20Holey%20Graphene-Supported%20Single-Atom%20Catalyst%20towards%20Hydrogen%20Evolution%20and%20Oxygen%20Reduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Khan,%20Kishwar&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-09-15&rft.volume=11&rft.issue=40&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1854518%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18545183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |