Loading…

Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction

Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs thro...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2021-09, Vol.11 (40)
Main Authors: Khan, Kishwar, Liu, Tangchao, Arif, Muhammad, Yan, Xingxu, Hossain, Md Delowar, Rehman, Faisal, Zhou, Sheng, Yang, Jing, Sun, Chengjun, Bae, Sang‐Hoon, Kim, Jeehwan, Amine, Khalil, Pan, Xiaoqing, Luo, Zhengtang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 40
container_start_page
container_title Advanced energy materials
container_volume 11
creator Khan, Kishwar
Liu, Tangchao
Arif, Muhammad
Yan, Xingxu
Hossain, Md Delowar
Rehman, Faisal
Zhou, Sheng
Yang, Jing
Sun, Chengjun
Bae, Sang‐Hoon
Kim, Jeehwan
Amine, Khalil
Pan, Xiaoqing
Luo, Zhengtang
description Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1854518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854518</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18545183</originalsourceid><addsrcrecordid>eNqNisGKwjAURYM4oKj_ENwHmmmVzlJErSAMjO7lkbzRDDGvJK9q_14L4nru5lzOvT0x1HNdqHlZZP13zz8HYpLSX_ZM8aWzPB-KsIOEUW1jBOuA0cqKPLZyE6E-Y0C1b-qaYjfsXTh5VAumi1wCg28TS6YbRJtk1dpIJwxydSXfsKMgIVj5fW87-YO2MZ0ci49f8AknL47EdL06LCtFid0xGcdozoZCQMNHXc6KmS7zf50ekWlMXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><source>Wiley</source><creator>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</creator><creatorcontrib>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>dangling bonds ; grand canonical potential kinetics ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; laser irradiation ; nanocarbon support ; porous structures ; single-atom catalysts</subject><ispartof>Advanced energy materials, 2021-09, Vol.11 (40)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000251349240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1854518$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Kishwar</creatorcontrib><creatorcontrib>Liu, Tangchao</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Rehman, Faisal</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Bae, Sang‐Hoon</creatorcontrib><creatorcontrib>Kim, Jeehwan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><title>Advanced energy materials</title><description>Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.</description><subject>dangling bonds</subject><subject>grand canonical potential kinetics</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>laser irradiation</subject><subject>nanocarbon support</subject><subject>porous structures</subject><subject>single-atom catalysts</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNisGKwjAURYM4oKj_ENwHmmmVzlJErSAMjO7lkbzRDDGvJK9q_14L4nru5lzOvT0x1HNdqHlZZP13zz8HYpLSX_ZM8aWzPB-KsIOEUW1jBOuA0cqKPLZyE6E-Y0C1b-qaYjfsXTh5VAumi1wCg28TS6YbRJtk1dpIJwxydSXfsKMgIVj5fW87-YO2MZ0ci49f8AknL47EdL06LCtFid0xGcdozoZCQMNHXc6KmS7zf50ekWlMXg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Khan, Kishwar</creator><creator>Liu, Tangchao</creator><creator>Arif, Muhammad</creator><creator>Yan, Xingxu</creator><creator>Hossain, Md Delowar</creator><creator>Rehman, Faisal</creator><creator>Zhou, Sheng</creator><creator>Yang, Jing</creator><creator>Sun, Chengjun</creator><creator>Bae, Sang‐Hoon</creator><creator>Kim, Jeehwan</creator><creator>Amine, Khalil</creator><creator>Pan, Xiaoqing</creator><creator>Luo, Zhengtang</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000251349240</orcidid></search><sort><creationdate>20210915</creationdate><title>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</title><author>Khan, Kishwar ; Liu, Tangchao ; Arif, Muhammad ; Yan, Xingxu ; Hossain, Md Delowar ; Rehman, Faisal ; Zhou, Sheng ; Yang, Jing ; Sun, Chengjun ; Bae, Sang‐Hoon ; Kim, Jeehwan ; Amine, Khalil ; Pan, Xiaoqing ; Luo, Zhengtang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18545183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>dangling bonds</topic><topic>grand canonical potential kinetics</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>laser irradiation</topic><topic>nanocarbon support</topic><topic>porous structures</topic><topic>single-atom catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Kishwar</creatorcontrib><creatorcontrib>Liu, Tangchao</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Hossain, Md Delowar</creatorcontrib><creatorcontrib>Rehman, Faisal</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Sun, Chengjun</creatorcontrib><creatorcontrib>Bae, Sang‐Hoon</creatorcontrib><creatorcontrib>Kim, Jeehwan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Luo, Zhengtang</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Kishwar</au><au>Liu, Tangchao</au><au>Arif, Muhammad</au><au>Yan, Xingxu</au><au>Hossain, Md Delowar</au><au>Rehman, Faisal</au><au>Zhou, Sheng</au><au>Yang, Jing</au><au>Sun, Chengjun</au><au>Bae, Sang‐Hoon</au><au>Kim, Jeehwan</au><au>Amine, Khalil</au><au>Pan, Xiaoqing</au><au>Luo, Zhengtang</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction</atitle><jtitle>Advanced energy materials</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>11</volume><issue>40</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Single-atom catalysts (SAC) can boost the intrinsic catalytic activity of hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). However, the challenge remains due to the complex synthesis process and insufficient stability. A sustainable approach is applied to synthesizing SACs through laser irradiation and gaining mesoporous graphene oxide (MGO). The surface dangling bonds of nitrogen-doped MGO (NMGO) extract metal atoms species from Co or Fe metal foams and convert them to SAC via an appropriate synthesis approach. Notably, the Co-NMGO electrocatalyst requires low potentials of 146 mV to convey a current density of 10 mA cm-2 towards HER. Similarly, the Fe-NMGO electrocatalyst offers an onset of 0.79 V towards ORR in acidic solution. The individual metal atoms are confirmed via aberration-corrected scanning transmission electron microscopy, and X-ray absorption near-edge structure and extended X-ray absorption fine structure. Density functional theory calculations by applying the grand canonical potential kinetics model revealed that Co-NMGO shows the optimum free reaction energy of -0.17 eV at -0.1 V for HER, and Fe-NMGO has less limiting potential than that of Co-NMGO for ORR case. Furthermore, this work opens a new approach towards the synthesis of SAC and its mechanistic understandings.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000251349240</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-09, Vol.11 (40)
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1854518
source Wiley
subjects dangling bonds
grand canonical potential kinetics
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
laser irradiation
nanocarbon support
porous structures
single-atom catalysts
title Laser-Irradiated Holey Graphene-Supported Single-Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Irradiated%20Holey%20Graphene-Supported%20Single-Atom%20Catalyst%20towards%20Hydrogen%20Evolution%20and%20Oxygen%20Reduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Khan,%20Kishwar&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-09-15&rft.volume=11&rft.issue=40&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1854518%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18545183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true