Loading…

Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi

The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and th...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2021-12, Vol.233 (5)
Main Authors: Looney, Brian, Miyauchi, Shingo, Morin, Emmanuelle, Drula, Elodie, Courty, Pierre Emmanuel, Kohler, Annegret, Kuo, Alan, LaButti, Kurt, Pangilinan, Jasmyn, Lipzen, Anna, Riley, Robert, Andreopoulos, William, He, Guifen, Johnson, Jenifer, Nolan, Matt, Tritt, Andrew, Barry, Kerrie W., Grigoriev, Igor V., Nagy, László G., Hibbett, David, Henrissat, Bernard, Matheny, P. Brandon, Labbé, Jesse, Martin, Francis M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page
container_title The New phytologist
container_volume 233
creator Looney, Brian
Miyauchi, Shingo
Morin, Emmanuelle
Drula, Elodie
Courty, Pierre Emmanuel
Kohler, Annegret
Kuo, Alan
LaButti, Kurt
Pangilinan, Jasmyn
Lipzen, Anna
Riley, Robert
Andreopoulos, William
He, Guifen
Johnson, Jenifer
Nolan, Matt
Tritt, Andrew
Barry, Kerrie W.
Grigoriev, Igor V.
Nagy, László G.
Hibbett, David
Henrissat, Bernard
Matheny, P. Brandon
Labbé, Jesse
Martin, Francis M.
description The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Here, some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1856713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1856713</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18567133</originalsourceid><addsrcrecordid>eNqNjkFOwzAQRS0EUkPhDiP2kZymddM1KuIALNhVrjuJB8UzlccpCqeHIg7A6unr_cW7MVWzdru6a9rtramsXXW1W7v3hblX_bDW7jZuVZnP_UXGqZCwzzOU7FnpuqAIlIiAoUiag-Qc6cuPEP2RChD_ygFZEipIDx7ifMZ8ogtmRRiJ0Q94NWnSmEVS3UtOxAP0Ew_0YO56Pyo-_nFpnl72b8-vtWihgwYqGGIQ5p-AQ9Nt3LZp23-dvgHNeVA2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi</title><source>Wiley</source><creator>Looney, Brian ; Miyauchi, Shingo ; Morin, Emmanuelle ; Drula, Elodie ; Courty, Pierre Emmanuel ; Kohler, Annegret ; Kuo, Alan ; LaButti, Kurt ; Pangilinan, Jasmyn ; Lipzen, Anna ; Riley, Robert ; Andreopoulos, William ; He, Guifen ; Johnson, Jenifer ; Nolan, Matt ; Tritt, Andrew ; Barry, Kerrie W. ; Grigoriev, Igor V. ; Nagy, László G. ; Hibbett, David ; Henrissat, Bernard ; Matheny, P. Brandon ; Labbé, Jesse ; Martin, Francis M.</creator><creatorcontrib>Looney, Brian ; Miyauchi, Shingo ; Morin, Emmanuelle ; Drula, Elodie ; Courty, Pierre Emmanuel ; Kohler, Annegret ; Kuo, Alan ; LaButti, Kurt ; Pangilinan, Jasmyn ; Lipzen, Anna ; Riley, Robert ; Andreopoulos, William ; He, Guifen ; Johnson, Jenifer ; Nolan, Matt ; Tritt, Andrew ; Barry, Kerrie W. ; Grigoriev, Igor V. ; Nagy, László G. ; Hibbett, David ; Henrissat, Bernard ; Matheny, P. Brandon ; Labbé, Jesse ; Martin, Francis M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Here, some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Russulaceae ; Russulales ; secondary metabolism cluster ; synteny ; transposable elements</subject><ispartof>The New phytologist, 2021-12, Vol.233 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000291453165 ; 0000000247373715 ; 0000000295759567 ; 0000000241028566 ; 0000000258381972 ; 0000000206205547 ; 0000000153429909 ; 0000000302240975 ; 0000000231368903 ; 0000000303682054 ; 0000000335143530 ; 0000000234348588 ; 0000000327897818 ; 0000000291685214 ; 0000000289996785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1856713$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Looney, Brian</creatorcontrib><creatorcontrib>Miyauchi, Shingo</creatorcontrib><creatorcontrib>Morin, Emmanuelle</creatorcontrib><creatorcontrib>Drula, Elodie</creatorcontrib><creatorcontrib>Courty, Pierre Emmanuel</creatorcontrib><creatorcontrib>Kohler, Annegret</creatorcontrib><creatorcontrib>Kuo, Alan</creatorcontrib><creatorcontrib>LaButti, Kurt</creatorcontrib><creatorcontrib>Pangilinan, Jasmyn</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Riley, Robert</creatorcontrib><creatorcontrib>Andreopoulos, William</creatorcontrib><creatorcontrib>He, Guifen</creatorcontrib><creatorcontrib>Johnson, Jenifer</creatorcontrib><creatorcontrib>Nolan, Matt</creatorcontrib><creatorcontrib>Tritt, Andrew</creatorcontrib><creatorcontrib>Barry, Kerrie W.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Nagy, László G.</creatorcontrib><creatorcontrib>Hibbett, David</creatorcontrib><creatorcontrib>Henrissat, Bernard</creatorcontrib><creatorcontrib>Matheny, P. Brandon</creatorcontrib><creatorcontrib>Labbé, Jesse</creatorcontrib><creatorcontrib>Martin, Francis M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi</title><title>The New phytologist</title><description>The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Here, some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Russulaceae</subject><subject>Russulales</subject><subject>secondary metabolism cluster</subject><subject>synteny</subject><subject>transposable elements</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjkFOwzAQRS0EUkPhDiP2kZymddM1KuIALNhVrjuJB8UzlccpCqeHIg7A6unr_cW7MVWzdru6a9rtramsXXW1W7v3hblX_bDW7jZuVZnP_UXGqZCwzzOU7FnpuqAIlIiAoUiag-Qc6cuPEP2RChD_ygFZEipIDx7ifMZ8ogtmRRiJ0Q94NWnSmEVS3UtOxAP0Ew_0YO56Pyo-_nFpnl72b8-vtWihgwYqGGIQ5p-AQ9Nt3LZp23-dvgHNeVA2</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>Looney, Brian</creator><creator>Miyauchi, Shingo</creator><creator>Morin, Emmanuelle</creator><creator>Drula, Elodie</creator><creator>Courty, Pierre Emmanuel</creator><creator>Kohler, Annegret</creator><creator>Kuo, Alan</creator><creator>LaButti, Kurt</creator><creator>Pangilinan, Jasmyn</creator><creator>Lipzen, Anna</creator><creator>Riley, Robert</creator><creator>Andreopoulos, William</creator><creator>He, Guifen</creator><creator>Johnson, Jenifer</creator><creator>Nolan, Matt</creator><creator>Tritt, Andrew</creator><creator>Barry, Kerrie W.</creator><creator>Grigoriev, Igor V.</creator><creator>Nagy, László G.</creator><creator>Hibbett, David</creator><creator>Henrissat, Bernard</creator><creator>Matheny, P. Brandon</creator><creator>Labbé, Jesse</creator><creator>Martin, Francis M.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000291453165</orcidid><orcidid>https://orcid.org/0000000247373715</orcidid><orcidid>https://orcid.org/0000000295759567</orcidid><orcidid>https://orcid.org/0000000241028566</orcidid><orcidid>https://orcid.org/0000000258381972</orcidid><orcidid>https://orcid.org/0000000206205547</orcidid><orcidid>https://orcid.org/0000000153429909</orcidid><orcidid>https://orcid.org/0000000302240975</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000303682054</orcidid><orcidid>https://orcid.org/0000000335143530</orcidid><orcidid>https://orcid.org/0000000234348588</orcidid><orcidid>https://orcid.org/0000000327897818</orcidid><orcidid>https://orcid.org/0000000291685214</orcidid><orcidid>https://orcid.org/0000000289996785</orcidid></search><sort><creationdate>20211203</creationdate><title>Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi</title><author>Looney, Brian ; Miyauchi, Shingo ; Morin, Emmanuelle ; Drula, Elodie ; Courty, Pierre Emmanuel ; Kohler, Annegret ; Kuo, Alan ; LaButti, Kurt ; Pangilinan, Jasmyn ; Lipzen, Anna ; Riley, Robert ; Andreopoulos, William ; He, Guifen ; Johnson, Jenifer ; Nolan, Matt ; Tritt, Andrew ; Barry, Kerrie W. ; Grigoriev, Igor V. ; Nagy, László G. ; Hibbett, David ; Henrissat, Bernard ; Matheny, P. Brandon ; Labbé, Jesse ; Martin, Francis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18567133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Russulaceae</topic><topic>Russulales</topic><topic>secondary metabolism cluster</topic><topic>synteny</topic><topic>transposable elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Looney, Brian</creatorcontrib><creatorcontrib>Miyauchi, Shingo</creatorcontrib><creatorcontrib>Morin, Emmanuelle</creatorcontrib><creatorcontrib>Drula, Elodie</creatorcontrib><creatorcontrib>Courty, Pierre Emmanuel</creatorcontrib><creatorcontrib>Kohler, Annegret</creatorcontrib><creatorcontrib>Kuo, Alan</creatorcontrib><creatorcontrib>LaButti, Kurt</creatorcontrib><creatorcontrib>Pangilinan, Jasmyn</creatorcontrib><creatorcontrib>Lipzen, Anna</creatorcontrib><creatorcontrib>Riley, Robert</creatorcontrib><creatorcontrib>Andreopoulos, William</creatorcontrib><creatorcontrib>He, Guifen</creatorcontrib><creatorcontrib>Johnson, Jenifer</creatorcontrib><creatorcontrib>Nolan, Matt</creatorcontrib><creatorcontrib>Tritt, Andrew</creatorcontrib><creatorcontrib>Barry, Kerrie W.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Nagy, László G.</creatorcontrib><creatorcontrib>Hibbett, David</creatorcontrib><creatorcontrib>Henrissat, Bernard</creatorcontrib><creatorcontrib>Matheny, P. Brandon</creatorcontrib><creatorcontrib>Labbé, Jesse</creatorcontrib><creatorcontrib>Martin, Francis M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Looney, Brian</au><au>Miyauchi, Shingo</au><au>Morin, Emmanuelle</au><au>Drula, Elodie</au><au>Courty, Pierre Emmanuel</au><au>Kohler, Annegret</au><au>Kuo, Alan</au><au>LaButti, Kurt</au><au>Pangilinan, Jasmyn</au><au>Lipzen, Anna</au><au>Riley, Robert</au><au>Andreopoulos, William</au><au>He, Guifen</au><au>Johnson, Jenifer</au><au>Nolan, Matt</au><au>Tritt, Andrew</au><au>Barry, Kerrie W.</au><au>Grigoriev, Igor V.</au><au>Nagy, László G.</au><au>Hibbett, David</au><au>Henrissat, Bernard</au><au>Matheny, P. Brandon</au><au>Labbé, Jesse</au><au>Martin, Francis M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi</atitle><jtitle>The New phytologist</jtitle><date>2021-12-03</date><risdate>2021</risdate><volume>233</volume><issue>5</issue><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Here, some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000291453165</orcidid><orcidid>https://orcid.org/0000000247373715</orcidid><orcidid>https://orcid.org/0000000295759567</orcidid><orcidid>https://orcid.org/0000000241028566</orcidid><orcidid>https://orcid.org/0000000258381972</orcidid><orcidid>https://orcid.org/0000000206205547</orcidid><orcidid>https://orcid.org/0000000153429909</orcidid><orcidid>https://orcid.org/0000000302240975</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000303682054</orcidid><orcidid>https://orcid.org/0000000335143530</orcidid><orcidid>https://orcid.org/0000000234348588</orcidid><orcidid>https://orcid.org/0000000327897818</orcidid><orcidid>https://orcid.org/0000000291685214</orcidid><orcidid>https://orcid.org/0000000289996785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-12, Vol.233 (5)
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_1856713
source Wiley
subjects BASIC BIOLOGICAL SCIENCES
Russulaceae
Russulales
secondary metabolism cluster
synteny
transposable elements
title Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20transition%20to%20the%20ectomycorrhizal%20habit%20in%20the%20genomes%20of%20a%20hyperdiverse%20lineage%20of%20mushroom-forming%20fungi&rft.jtitle=The%20New%20phytologist&rft.au=Looney,%20Brian&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-12-03&rft.volume=233&rft.issue=5&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/&rft_dat=%3Costi%3E1856713%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18567133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true