Loading…
Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number
Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and...
Saved in:
Published in: | ACS energy letters 2021-03 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | ACS energy letters |
container_volume | |
creator | Liu, Kewei Li, Xiang Cai, Jiyu Yang, Zhenzhen Chen, Zonghai Key, Baris Zhang, Zhengcheng Dzwiniel, Trevor L. Liao, Chen |
description | Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1857320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1857320</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18573203</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMoWLT_8HAvpC3VOGulg7hYBaeSxtcmEhNIItK_t4ODo9zhnuGeOyFRljOasHRbTH94TmLvH5TSdM2KMRG57dGr3oDtoFK9TK5WB94jnANvNUI1tE7dodQogrN6CAhvFSRwAxcdHJejA0cFtePGd-jQCITT69miW5JZx7XH-NsLsjqU9a5KrA-q8UIFFFJYY8brJmXFJs9o_tfoA66VQ6I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Kewei ; Li, Xiang ; Cai, Jiyu ; Yang, Zhenzhen ; Chen, Zonghai ; Key, Baris ; Zhang, Zhengcheng ; Dzwiniel, Trevor L. ; Liao, Chen</creator><creatorcontrib>Liu, Kewei ; Li, Xiang ; Cai, Jiyu ; Yang, Zhenzhen ; Chen, Zonghai ; Key, Baris ; Zhang, Zhengcheng ; Dzwiniel, Trevor L. ; Liao, Chen ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ceramic ; composite ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; polymer ; single ion conducting ; solid state electrolyte</subject><ispartof>ACS energy letters, 2021-03</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000151686493 ; 0000000204675801 ; 0000000219871629 ; 0000000153719463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1857320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Cai, Jiyu</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Zhang, Zhengcheng</creatorcontrib><creatorcontrib>Dzwiniel, Trevor L.</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</title><title>ACS energy letters</title><description>Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.</description><subject>ceramic</subject><subject>composite</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>polymer</subject><subject>single ion conducting</subject><subject>solid state electrolyte</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjLEKwjAURYMoWLT_8HAvpC3VOGulg7hYBaeSxtcmEhNIItK_t4ODo9zhnuGeOyFRljOasHRbTH94TmLvH5TSdM2KMRG57dGr3oDtoFK9TK5WB94jnANvNUI1tE7dodQogrN6CAhvFSRwAxcdHJejA0cFtePGd-jQCITT69miW5JZx7XH-NsLsjqU9a5KrA-q8UIFFFJYY8brJmXFJs9o_tfoA66VQ6I</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Liu, Kewei</creator><creator>Li, Xiang</creator><creator>Cai, Jiyu</creator><creator>Yang, Zhenzhen</creator><creator>Chen, Zonghai</creator><creator>Key, Baris</creator><creator>Zhang, Zhengcheng</creator><creator>Dzwiniel, Trevor L.</creator><creator>Liao, Chen</creator><general>American Chemical Society</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000204675801</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000153719463</orcidid></search><sort><creationdate>20210316</creationdate><title>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</title><author>Liu, Kewei ; Li, Xiang ; Cai, Jiyu ; Yang, Zhenzhen ; Chen, Zonghai ; Key, Baris ; Zhang, Zhengcheng ; Dzwiniel, Trevor L. ; Liao, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18573203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ceramic</topic><topic>composite</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>polymer</topic><topic>single ion conducting</topic><topic>solid state electrolyte</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Cai, Jiyu</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Zhang, Zhengcheng</creatorcontrib><creatorcontrib>Dzwiniel, Trevor L.</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kewei</au><au>Li, Xiang</au><au>Cai, Jiyu</au><au>Yang, Zhenzhen</au><au>Chen, Zonghai</au><au>Key, Baris</au><au>Zhang, Zhengcheng</au><au>Dzwiniel, Trevor L.</au><au>Liao, Chen</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</atitle><jtitle>ACS energy letters</jtitle><date>2021-03-16</date><risdate>2021</risdate><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000204675801</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000153719463</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2021-03 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1857320 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | ceramic composite INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY polymer single ion conducting solid state electrolyte |
title | Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20High-Voltage%20Stable%20Hybrid%20Electrolyte%20with%20an%20Ultrahigh%20Li%20Transference%20Number&rft.jtitle=ACS%20energy%20letters&rft.au=Liu,%20Kewei&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-03-16&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/&rft_dat=%3Costi%3E1857320%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18573203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |