Loading…

Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number

Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2021-03
Main Authors: Liu, Kewei, Li, Xiang, Cai, Jiyu, Yang, Zhenzhen, Chen, Zonghai, Key, Baris, Zhang, Zhengcheng, Dzwiniel, Trevor L., Liao, Chen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title ACS energy letters
container_volume
creator Liu, Kewei
Li, Xiang
Cai, Jiyu
Yang, Zhenzhen
Chen, Zonghai
Key, Baris
Zhang, Zhengcheng
Dzwiniel, Trevor L.
Liao, Chen
description Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1857320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1857320</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18573203</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMoWLT_8HAvpC3VOGulg7hYBaeSxtcmEhNIItK_t4ODo9zhnuGeOyFRljOasHRbTH94TmLvH5TSdM2KMRG57dGr3oDtoFK9TK5WB94jnANvNUI1tE7dodQogrN6CAhvFSRwAxcdHJejA0cFtePGd-jQCITT69miW5JZx7XH-NsLsjqU9a5KrA-q8UIFFFJYY8brJmXFJs9o_tfoA66VQ6I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Kewei ; Li, Xiang ; Cai, Jiyu ; Yang, Zhenzhen ; Chen, Zonghai ; Key, Baris ; Zhang, Zhengcheng ; Dzwiniel, Trevor L. ; Liao, Chen</creator><creatorcontrib>Liu, Kewei ; Li, Xiang ; Cai, Jiyu ; Yang, Zhenzhen ; Chen, Zonghai ; Key, Baris ; Zhang, Zhengcheng ; Dzwiniel, Trevor L. ; Liao, Chen ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ceramic ; composite ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; polymer ; single ion conducting ; solid state electrolyte</subject><ispartof>ACS energy letters, 2021-03</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000151686493 ; 0000000204675801 ; 0000000219871629 ; 0000000153719463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1857320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Cai, Jiyu</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Zhang, Zhengcheng</creatorcontrib><creatorcontrib>Dzwiniel, Trevor L.</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</title><title>ACS energy letters</title><description>Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.</description><subject>ceramic</subject><subject>composite</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>polymer</subject><subject>single ion conducting</subject><subject>solid state electrolyte</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjLEKwjAURYMoWLT_8HAvpC3VOGulg7hYBaeSxtcmEhNIItK_t4ODo9zhnuGeOyFRljOasHRbTH94TmLvH5TSdM2KMRG57dGr3oDtoFK9TK5WB94jnANvNUI1tE7dodQogrN6CAhvFSRwAxcdHJejA0cFtePGd-jQCITT69miW5JZx7XH-NsLsjqU9a5KrA-q8UIFFFJYY8brJmXFJs9o_tfoA66VQ6I</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Liu, Kewei</creator><creator>Li, Xiang</creator><creator>Cai, Jiyu</creator><creator>Yang, Zhenzhen</creator><creator>Chen, Zonghai</creator><creator>Key, Baris</creator><creator>Zhang, Zhengcheng</creator><creator>Dzwiniel, Trevor L.</creator><creator>Liao, Chen</creator><general>American Chemical Society</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000204675801</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000153719463</orcidid></search><sort><creationdate>20210316</creationdate><title>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</title><author>Liu, Kewei ; Li, Xiang ; Cai, Jiyu ; Yang, Zhenzhen ; Chen, Zonghai ; Key, Baris ; Zhang, Zhengcheng ; Dzwiniel, Trevor L. ; Liao, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18573203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ceramic</topic><topic>composite</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>polymer</topic><topic>single ion conducting</topic><topic>solid state electrolyte</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Cai, Jiyu</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Chen, Zonghai</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Zhang, Zhengcheng</creatorcontrib><creatorcontrib>Dzwiniel, Trevor L.</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kewei</au><au>Li, Xiang</au><au>Cai, Jiyu</au><au>Yang, Zhenzhen</au><au>Chen, Zonghai</au><au>Key, Baris</au><au>Zhang, Zhengcheng</au><au>Dzwiniel, Trevor L.</au><au>Liao, Chen</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number</atitle><jtitle>ACS energy letters</jtitle><date>2021-03-16</date><risdate>2021</risdate><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Considering the high energy consumption during processing, and the low compliance and adhesion of ceramic electrolytes, the integration of polymer into ceramic electrolytes provides a way to mitigate the interfacial issues. However, the severe ion concentration gradient, low ionic conductivity, and instability toward Li metal and high-voltage cathodes become the major concerns in applying hybrid electrolytes. In this work, we report a single-ionconducting hybrid electrolyte (SIE-LLZO) with 64 wt % Li7La3Zr2O12(LLZO) particles embedded in a fluoroboron-centered Li-conductive polymer framework (LiBFSIE). The SIE-LLZO electrolyte exhibited a high Li transference number of 0.94 and electrochemical stability up to 5.6 V vs Li/Li+. Promising averaged Coulombic efficiencies of 99.97% and 99.91% were achieved in cells with LiNi0.8Co0.15Al0.05O2 and LiNi0.6Mn0.2Co0.2O2 cathodes for 400 and 200 cycles, respectively. Finally, the Li-conducting pathway in the hybrid electrolyte was further investigated by a 6Li-to-7Li isotope replacement method, indicating that Li transport mainly relies on the LLZO and interface between LiBFSIE and LLZO.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000204675801</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000153719463</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2021-03
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1857320
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects ceramic
composite
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
polymer
single ion conducting
solid state electrolyte
title Design of High-Voltage Stable Hybrid Electrolyte with an Ultrahigh Li Transference Number
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20High-Voltage%20Stable%20Hybrid%20Electrolyte%20with%20an%20Ultrahigh%20Li%20Transference%20Number&rft.jtitle=ACS%20energy%20letters&rft.au=Liu,%20Kewei&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-03-16&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/&rft_dat=%3Costi%3E1857320%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18573203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true