Loading…

Intelligent Agents for the Optimization of Atomic Layer Deposition

Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-04, Vol.13 (14)
Main Authors: Paulson, Noah H., Yanguas-Gil, Angel, Abuomar, Osama Y., Elam, Jeffrey W.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 14
container_start_page
container_title ACS applied materials & interfaces
container_volume 13
creator Paulson, Noah H.
Yanguas-Gil, Angel
Abuomar, Osama Y.
Elam, Jeffrey W.
description Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1858154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1858154</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18581543</originalsourceid><addsrcrecordid>eNqNirsKwkAQRRdRMD7-YbAP5LErsYwvFIQ09iEsEzOS7ITsNPr1EhBrm3sOnDtRQbzTOswSk0x_rvVcLbx_RtE2TSITqP3VCbYtPdAJ5ON6qHkAaRCKXqijdyXEDriGXLgjC7fqhQMcsWdPY1qpWV21HtdfLtXmfLofLiF7odJbErSNZefQShlnJouNTv86fQBLaDsf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent Agents for the Optimization of Atomic Layer Deposition</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Paulson, Noah H. ; Yanguas-Gil, Angel ; Abuomar, Osama Y. ; Elam, Jeffrey W.</creator><creatorcontrib>Paulson, Noah H. ; Yanguas-Gil, Angel ; Abuomar, Osama Y. ; Elam, Jeffrey W. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>artificial intelligence ; atomic layer deposition ; Bayesian optimization ; expert systems ; gel permeation chromatography ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; optimization ; precursors ; process optimization ; saturation</subject><ispartof>ACS applied materials &amp; interfaces, 2021-04, Vol.13 (14)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000235489120 ; 0000000258612996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1858154$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulson, Noah H.</creatorcontrib><creatorcontrib>Yanguas-Gil, Angel</creatorcontrib><creatorcontrib>Abuomar, Osama Y.</creatorcontrib><creatorcontrib>Elam, Jeffrey W.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Intelligent Agents for the Optimization of Atomic Layer Deposition</title><title>ACS applied materials &amp; interfaces</title><description>Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.</description><subject>artificial intelligence</subject><subject>atomic layer deposition</subject><subject>Bayesian optimization</subject><subject>expert systems</subject><subject>gel permeation chromatography</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>optimization</subject><subject>precursors</subject><subject>process optimization</subject><subject>saturation</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNirsKwkAQRRdRMD7-YbAP5LErsYwvFIQ09iEsEzOS7ITsNPr1EhBrm3sOnDtRQbzTOswSk0x_rvVcLbx_RtE2TSITqP3VCbYtPdAJ5ON6qHkAaRCKXqijdyXEDriGXLgjC7fqhQMcsWdPY1qpWV21HtdfLtXmfLofLiF7odJbErSNZefQShlnJouNTv86fQBLaDsf</recordid><startdate>20210405</startdate><enddate>20210405</enddate><creator>Paulson, Noah H.</creator><creator>Yanguas-Gil, Angel</creator><creator>Abuomar, Osama Y.</creator><creator>Elam, Jeffrey W.</creator><general>American Chemical Society</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000235489120</orcidid><orcidid>https://orcid.org/0000000258612996</orcidid></search><sort><creationdate>20210405</creationdate><title>Intelligent Agents for the Optimization of Atomic Layer Deposition</title><author>Paulson, Noah H. ; Yanguas-Gil, Angel ; Abuomar, Osama Y. ; Elam, Jeffrey W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18581543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>atomic layer deposition</topic><topic>Bayesian optimization</topic><topic>expert systems</topic><topic>gel permeation chromatography</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>optimization</topic><topic>precursors</topic><topic>process optimization</topic><topic>saturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulson, Noah H.</creatorcontrib><creatorcontrib>Yanguas-Gil, Angel</creatorcontrib><creatorcontrib>Abuomar, Osama Y.</creatorcontrib><creatorcontrib>Elam, Jeffrey W.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulson, Noah H.</au><au>Yanguas-Gil, Angel</au><au>Abuomar, Osama Y.</au><au>Elam, Jeffrey W.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Agents for the Optimization of Atomic Layer Deposition</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><date>2021-04-05</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000235489120</orcidid><orcidid>https://orcid.org/0000000258612996</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-04, Vol.13 (14)
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1858154
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects artificial intelligence
atomic layer deposition
Bayesian optimization
expert systems
gel permeation chromatography
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
optimization
precursors
process optimization
saturation
title Intelligent Agents for the Optimization of Atomic Layer Deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Agents%20for%20the%20Optimization%20of%20Atomic%20Layer%20Deposition&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Paulson,%20Noah%20H.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-04-05&rft.volume=13&rft.issue=14&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/&rft_dat=%3Costi%3E1858154%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18581543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true