Loading…
Intelligent Agents for the Optimization of Atomic Layer Deposition
Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in...
Saved in:
Published in: | ACS applied materials & interfaces 2021-04, Vol.13 (14) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 14 |
container_start_page | |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Paulson, Noah H. Yanguas-Gil, Angel Abuomar, Osama Y. Elam, Jeffrey W. |
description | Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1858154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1858154</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18581543</originalsourceid><addsrcrecordid>eNqNirsKwkAQRRdRMD7-YbAP5LErsYwvFIQ09iEsEzOS7ITsNPr1EhBrm3sOnDtRQbzTOswSk0x_rvVcLbx_RtE2TSITqP3VCbYtPdAJ5ON6qHkAaRCKXqijdyXEDriGXLgjC7fqhQMcsWdPY1qpWV21HtdfLtXmfLofLiF7odJbErSNZefQShlnJouNTv86fQBLaDsf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent Agents for the Optimization of Atomic Layer Deposition</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Paulson, Noah H. ; Yanguas-Gil, Angel ; Abuomar, Osama Y. ; Elam, Jeffrey W.</creator><creatorcontrib>Paulson, Noah H. ; Yanguas-Gil, Angel ; Abuomar, Osama Y. ; Elam, Jeffrey W. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>artificial intelligence ; atomic layer deposition ; Bayesian optimization ; expert systems ; gel permeation chromatography ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; optimization ; precursors ; process optimization ; saturation</subject><ispartof>ACS applied materials & interfaces, 2021-04, Vol.13 (14)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000235489120 ; 0000000258612996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1858154$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulson, Noah H.</creatorcontrib><creatorcontrib>Yanguas-Gil, Angel</creatorcontrib><creatorcontrib>Abuomar, Osama Y.</creatorcontrib><creatorcontrib>Elam, Jeffrey W.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Intelligent Agents for the Optimization of Atomic Layer Deposition</title><title>ACS applied materials & interfaces</title><description>Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.</description><subject>artificial intelligence</subject><subject>atomic layer deposition</subject><subject>Bayesian optimization</subject><subject>expert systems</subject><subject>gel permeation chromatography</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>optimization</subject><subject>precursors</subject><subject>process optimization</subject><subject>saturation</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNirsKwkAQRRdRMD7-YbAP5LErsYwvFIQ09iEsEzOS7ITsNPr1EhBrm3sOnDtRQbzTOswSk0x_rvVcLbx_RtE2TSITqP3VCbYtPdAJ5ON6qHkAaRCKXqijdyXEDriGXLgjC7fqhQMcsWdPY1qpWV21HtdfLtXmfLofLiF7odJbErSNZefQShlnJouNTv86fQBLaDsf</recordid><startdate>20210405</startdate><enddate>20210405</enddate><creator>Paulson, Noah H.</creator><creator>Yanguas-Gil, Angel</creator><creator>Abuomar, Osama Y.</creator><creator>Elam, Jeffrey W.</creator><general>American Chemical Society</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000235489120</orcidid><orcidid>https://orcid.org/0000000258612996</orcidid></search><sort><creationdate>20210405</creationdate><title>Intelligent Agents for the Optimization of Atomic Layer Deposition</title><author>Paulson, Noah H. ; Yanguas-Gil, Angel ; Abuomar, Osama Y. ; Elam, Jeffrey W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18581543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>atomic layer deposition</topic><topic>Bayesian optimization</topic><topic>expert systems</topic><topic>gel permeation chromatography</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>optimization</topic><topic>precursors</topic><topic>process optimization</topic><topic>saturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulson, Noah H.</creatorcontrib><creatorcontrib>Yanguas-Gil, Angel</creatorcontrib><creatorcontrib>Abuomar, Osama Y.</creatorcontrib><creatorcontrib>Elam, Jeffrey W.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulson, Noah H.</au><au>Yanguas-Gil, Angel</au><au>Abuomar, Osama Y.</au><au>Elam, Jeffrey W.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Agents for the Optimization of Atomic Layer Deposition</atitle><jtitle>ACS applied materials & interfaces</jtitle><date>2021-04-05</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. Here, a need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000235489120</orcidid><orcidid>https://orcid.org/0000000258612996</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-04, Vol.13 (14) |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1858154 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | artificial intelligence atomic layer deposition Bayesian optimization expert systems gel permeation chromatography INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY optimization precursors process optimization saturation |
title | Intelligent Agents for the Optimization of Atomic Layer Deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Agents%20for%20the%20Optimization%20of%20Atomic%20Layer%20Deposition&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Paulson,%20Noah%20H.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-04-05&rft.volume=13&rft.issue=14&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/&rft_dat=%3Costi%3E1858154%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18581543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |