Loading…

The Significance of Polarons and Dynamic Disorder in Halide Perovskites

The development of halide perovskite semiconductors led to various technological breakthroughs in optoelectronics, in particular in the areas of photovoltaics and light-emitting diodes. Additionally, the study of their fundamental properties has uncovered intriguing puzzles that demand explanation....

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2021-06, Vol.6 (6), p.2162-2173
Main Authors: Schilcher, Maximilian J, Robinson, Paul J, Abramovitch, David J, Tan, Liang Z, Rappe, Andrew M, Reichman, David R, Egger, David A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of halide perovskite semiconductors led to various technological breakthroughs in optoelectronics, in particular in the areas of photovoltaics and light-emitting diodes. Additionally, the study of their fundamental properties has uncovered intriguing puzzles that demand explanation. Polaronic effects associated with the coupling of electrons and holes to polar lattice vibrations are often invoked as a microscopic mechanism to explain various unusual experimental observations. While some form of polaronic behavior undoubtedly exists in these systems, several assumptions underlying standard models used to describe a polaron mechanism appear to be strongly violated in these materials. In this Perspective, we investigate the role of polaronic effects in halide perovskites and summarize signatures and failures of the polaron picture to explain physical characteristics of the materials. We highlight the importance of the complementary dynamic disorder concept that can rationalize various key properties of halide perovskites for which standard polaron and band-theory pictures of carrier transport fail.
ISSN:2380-8195
2380-8195
DOI:10.1021/acsenergylett.1c00506