Loading…

Algebraic compression of quantum circuits for Hamiltonian evolution

Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which s...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A 2022-03, Vol.105 (3), Article 032420
Main Authors: Kökcü, Efekan, Camps, Daan, Bassman Oftelie, Lindsay, Freericks, J. K., de Jong, Wibe A., Van Beeumen, Roel, Kemper, Alexander F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33
cites cdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33
container_end_page
container_issue 3
container_start_page
container_title Physical review. A
container_volume 105
creator Kökcü, Efekan
Camps, Daan
Bassman Oftelie, Lindsay
Freericks, J. K.
de Jong, Wibe A.
Van Beeumen, Roel
Kemper, Alexander F.
description Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.
doi_str_mv 10.1103/PhysRevA.105.032420
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1860355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_105_032420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gS_B986b3CZtH8dQJwwU0eeQZomLtM1M0sH-vRtTn-7h8nE4fITcMpgzBnj_uj2kN7tfzBmIOSAvOVyQCS9lUzQNlpf_mctrMkvpCwCYaBqJckKWi-7TtlF7Q03od9Gm5MNAg6Pfox7y2FPjoxl9TtSFSFe6910Og9cDtfvQjflI35Arp7tkZ793Sj4eH96Xq2L98vS8XKwLg5zloqrLymBZgWy4kxvbVlDVhmutAUwrGTjLhDNtzbHWp-VOWG2R4UY3zFnEKbk794aUvUrGZ2u2JgyDNVmxWgIKcYTwDJkYUorWqV30vY4HxUCdfKk_X8eHUGdf-AOO22Bx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic compression of quantum circuits for Hamiltonian evolution</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Kökcü, Efekan ; Camps, Daan ; Bassman Oftelie, Lindsay ; Freericks, J. K. ; de Jong, Wibe A. ; Van Beeumen, Roel ; Kemper, Alexander F.</creator><creatorcontrib>Kökcü, Efekan ; Camps, Daan ; Bassman Oftelie, Lindsay ; Freericks, J. K. ; de Jong, Wibe A. ; Van Beeumen, Roel ; Kemper, Alexander F. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.105.032420</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; quantum algorithms ; quantum computation ; quantum gates ; Quantum simulation</subject><ispartof>Physical review. A, 2022-03, Vol.105 (3), Article 032420</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</citedby><cites>FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</cites><orcidid>0000-0003-0236-4353 ; 0000-0003-2276-1153 ; 0000-0002-7323-7274 ; 0000-0002-5426-5181 ; 0000000322761153 ; 0000000254265181 ; 0000000273237274 ; 0000000302364353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1860355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kökcü, Efekan</creatorcontrib><creatorcontrib>Camps, Daan</creatorcontrib><creatorcontrib>Bassman Oftelie, Lindsay</creatorcontrib><creatorcontrib>Freericks, J. K.</creatorcontrib><creatorcontrib>de Jong, Wibe A.</creatorcontrib><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Kemper, Alexander F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Algebraic compression of quantum circuits for Hamiltonian evolution</title><title>Physical review. A</title><description>Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>quantum algorithms</subject><subject>quantum computation</subject><subject>quantum gates</subject><subject>Quantum simulation</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gS_B986b3CZtH8dQJwwU0eeQZomLtM1M0sH-vRtTn-7h8nE4fITcMpgzBnj_uj2kN7tfzBmIOSAvOVyQCS9lUzQNlpf_mctrMkvpCwCYaBqJckKWi-7TtlF7Q03od9Gm5MNAg6Pfox7y2FPjoxl9TtSFSFe6910Og9cDtfvQjflI35Arp7tkZ793Sj4eH96Xq2L98vS8XKwLg5zloqrLymBZgWy4kxvbVlDVhmutAUwrGTjLhDNtzbHWp-VOWG2R4UY3zFnEKbk794aUvUrGZ2u2JgyDNVmxWgIKcYTwDJkYUorWqV30vY4HxUCdfKk_X8eHUGdf-AOO22Bx</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Kökcü, Efekan</creator><creator>Camps, Daan</creator><creator>Bassman Oftelie, Lindsay</creator><creator>Freericks, J. K.</creator><creator>de Jong, Wibe A.</creator><creator>Van Beeumen, Roel</creator><creator>Kemper, Alexander F.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0236-4353</orcidid><orcidid>https://orcid.org/0000-0003-2276-1153</orcidid><orcidid>https://orcid.org/0000-0002-7323-7274</orcidid><orcidid>https://orcid.org/0000-0002-5426-5181</orcidid><orcidid>https://orcid.org/0000000322761153</orcidid><orcidid>https://orcid.org/0000000254265181</orcidid><orcidid>https://orcid.org/0000000273237274</orcidid><orcidid>https://orcid.org/0000000302364353</orcidid></search><sort><creationdate>20220310</creationdate><title>Algebraic compression of quantum circuits for Hamiltonian evolution</title><author>Kökcü, Efekan ; Camps, Daan ; Bassman Oftelie, Lindsay ; Freericks, J. K. ; de Jong, Wibe A. ; Van Beeumen, Roel ; Kemper, Alexander F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>quantum algorithms</topic><topic>quantum computation</topic><topic>quantum gates</topic><topic>Quantum simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kökcü, Efekan</creatorcontrib><creatorcontrib>Camps, Daan</creatorcontrib><creatorcontrib>Bassman Oftelie, Lindsay</creatorcontrib><creatorcontrib>Freericks, J. K.</creatorcontrib><creatorcontrib>de Jong, Wibe A.</creatorcontrib><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Kemper, Alexander F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kökcü, Efekan</au><au>Camps, Daan</au><au>Bassman Oftelie, Lindsay</au><au>Freericks, J. K.</au><au>de Jong, Wibe A.</au><au>Van Beeumen, Roel</au><au>Kemper, Alexander F.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic compression of quantum circuits for Hamiltonian evolution</atitle><jtitle>Physical review. A</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>105</volume><issue>3</issue><artnum>032420</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.105.032420</doi><orcidid>https://orcid.org/0000-0003-0236-4353</orcidid><orcidid>https://orcid.org/0000-0003-2276-1153</orcidid><orcidid>https://orcid.org/0000-0002-7323-7274</orcidid><orcidid>https://orcid.org/0000-0002-5426-5181</orcidid><orcidid>https://orcid.org/0000000322761153</orcidid><orcidid>https://orcid.org/0000000254265181</orcidid><orcidid>https://orcid.org/0000000273237274</orcidid><orcidid>https://orcid.org/0000000302364353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2022-03, Vol.105 (3), Article 032420
issn 2469-9926
2469-9934
language eng
recordid cdi_osti_scitechconnect_1860355
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
quantum algorithms
quantum computation
quantum gates
Quantum simulation
title Algebraic compression of quantum circuits for Hamiltonian evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20compression%20of%20quantum%20circuits%20for%20Hamiltonian%20evolution&rft.jtitle=Physical%20review.%20A&rft.au=K%C3%B6kc%C3%BC,%20Efekan&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-03-10&rft.volume=105&rft.issue=3&rft.artnum=032420&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.105.032420&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_105_032420%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true