Loading…
Algebraic compression of quantum circuits for Hamiltonian evolution
Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which s...
Saved in:
Published in: | Physical review. A 2022-03, Vol.105 (3), Article 032420 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Physical review. A |
container_volume | 105 |
creator | Kökcü, Efekan Camps, Daan Bassman Oftelie, Lindsay Freericks, J. K. de Jong, Wibe A. Van Beeumen, Roel Kemper, Alexander F. |
description | Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model. |
doi_str_mv | 10.1103/PhysRevA.105.032420 |
format | article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1860355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_105_032420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gS_B986b3CZtH8dQJwwU0eeQZomLtM1M0sH-vRtTn-7h8nE4fITcMpgzBnj_uj2kN7tfzBmIOSAvOVyQCS9lUzQNlpf_mctrMkvpCwCYaBqJckKWi-7TtlF7Q03od9Gm5MNAg6Pfox7y2FPjoxl9TtSFSFe6910Og9cDtfvQjflI35Arp7tkZ793Sj4eH96Xq2L98vS8XKwLg5zloqrLymBZgWy4kxvbVlDVhmutAUwrGTjLhDNtzbHWp-VOWG2R4UY3zFnEKbk794aUvUrGZ2u2JgyDNVmxWgIKcYTwDJkYUorWqV30vY4HxUCdfKk_X8eHUGdf-AOO22Bx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic compression of quantum circuits for Hamiltonian evolution</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Kökcü, Efekan ; Camps, Daan ; Bassman Oftelie, Lindsay ; Freericks, J. K. ; de Jong, Wibe A. ; Van Beeumen, Roel ; Kemper, Alexander F.</creator><creatorcontrib>Kökcü, Efekan ; Camps, Daan ; Bassman Oftelie, Lindsay ; Freericks, J. K. ; de Jong, Wibe A. ; Van Beeumen, Roel ; Kemper, Alexander F. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.105.032420</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; quantum algorithms ; quantum computation ; quantum gates ; Quantum simulation</subject><ispartof>Physical review. A, 2022-03, Vol.105 (3), Article 032420</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</citedby><cites>FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</cites><orcidid>0000-0003-0236-4353 ; 0000-0003-2276-1153 ; 0000-0002-7323-7274 ; 0000-0002-5426-5181 ; 0000000322761153 ; 0000000254265181 ; 0000000273237274 ; 0000000302364353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1860355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kökcü, Efekan</creatorcontrib><creatorcontrib>Camps, Daan</creatorcontrib><creatorcontrib>Bassman Oftelie, Lindsay</creatorcontrib><creatorcontrib>Freericks, J. K.</creatorcontrib><creatorcontrib>de Jong, Wibe A.</creatorcontrib><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Kemper, Alexander F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Algebraic compression of quantum circuits for Hamiltonian evolution</title><title>Physical review. A</title><description>Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>quantum algorithms</subject><subject>quantum computation</subject><subject>quantum gates</subject><subject>Quantum simulation</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gS_B986b3CZtH8dQJwwU0eeQZomLtM1M0sH-vRtTn-7h8nE4fITcMpgzBnj_uj2kN7tfzBmIOSAvOVyQCS9lUzQNlpf_mctrMkvpCwCYaBqJckKWi-7TtlF7Q03od9Gm5MNAg6Pfox7y2FPjoxl9TtSFSFe6910Og9cDtfvQjflI35Arp7tkZ793Sj4eH96Xq2L98vS8XKwLg5zloqrLymBZgWy4kxvbVlDVhmutAUwrGTjLhDNtzbHWp-VOWG2R4UY3zFnEKbk794aUvUrGZ2u2JgyDNVmxWgIKcYTwDJkYUorWqV30vY4HxUCdfKk_X8eHUGdf-AOO22Bx</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Kökcü, Efekan</creator><creator>Camps, Daan</creator><creator>Bassman Oftelie, Lindsay</creator><creator>Freericks, J. K.</creator><creator>de Jong, Wibe A.</creator><creator>Van Beeumen, Roel</creator><creator>Kemper, Alexander F.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0236-4353</orcidid><orcidid>https://orcid.org/0000-0003-2276-1153</orcidid><orcidid>https://orcid.org/0000-0002-7323-7274</orcidid><orcidid>https://orcid.org/0000-0002-5426-5181</orcidid><orcidid>https://orcid.org/0000000322761153</orcidid><orcidid>https://orcid.org/0000000254265181</orcidid><orcidid>https://orcid.org/0000000273237274</orcidid><orcidid>https://orcid.org/0000000302364353</orcidid></search><sort><creationdate>20220310</creationdate><title>Algebraic compression of quantum circuits for Hamiltonian evolution</title><author>Kökcü, Efekan ; Camps, Daan ; Bassman Oftelie, Lindsay ; Freericks, J. K. ; de Jong, Wibe A. ; Van Beeumen, Roel ; Kemper, Alexander F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>quantum algorithms</topic><topic>quantum computation</topic><topic>quantum gates</topic><topic>Quantum simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kökcü, Efekan</creatorcontrib><creatorcontrib>Camps, Daan</creatorcontrib><creatorcontrib>Bassman Oftelie, Lindsay</creatorcontrib><creatorcontrib>Freericks, J. K.</creatorcontrib><creatorcontrib>de Jong, Wibe A.</creatorcontrib><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Kemper, Alexander F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kökcü, Efekan</au><au>Camps, Daan</au><au>Bassman Oftelie, Lindsay</au><au>Freericks, J. K.</au><au>de Jong, Wibe A.</au><au>Van Beeumen, Roel</au><au>Kemper, Alexander F.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic compression of quantum circuits for Hamiltonian evolution</atitle><jtitle>Physical review. A</jtitle><date>2022-03-10</date><risdate>2022</risdate><volume>105</volume><issue>3</issue><artnum>032420</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Here unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hardware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of steps. When the circuit elements are limited to a subset of SU(4) - or equivalently, when the Hamiltonian may be mapped onto free fermionic models - several identities exist that combine and simplify the circuit. Based on this, we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for adiabatic state preparation of the transverse field Ising model.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.105.032420</doi><orcidid>https://orcid.org/0000-0003-0236-4353</orcidid><orcidid>https://orcid.org/0000-0003-2276-1153</orcidid><orcidid>https://orcid.org/0000-0002-7323-7274</orcidid><orcidid>https://orcid.org/0000-0002-5426-5181</orcidid><orcidid>https://orcid.org/0000000322761153</orcidid><orcidid>https://orcid.org/0000000254265181</orcidid><orcidid>https://orcid.org/0000000273237274</orcidid><orcidid>https://orcid.org/0000000302364353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2022-03, Vol.105 (3), Article 032420 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_osti_scitechconnect_1860355 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS quantum algorithms quantum computation quantum gates Quantum simulation |
title | Algebraic compression of quantum circuits for Hamiltonian evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20compression%20of%20quantum%20circuits%20for%20Hamiltonian%20evolution&rft.jtitle=Physical%20review.%20A&rft.au=K%C3%B6kc%C3%BC,%20Efekan&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-03-10&rft.volume=105&rft.issue=3&rft.artnum=032420&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.105.032420&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_105_032420%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-7847c3470692f6deb7078c2aaa00cb610fe15fcb8238a9934f5eae313da91fe33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |