Loading…

Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data

Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct dat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2021-07, Vol.26 (3)
Main Authors: Kaplan, Alan D., Cheng, Qi, Mohan, K. Aditya, Nelson, Lindsay D., Jain, Sonia, Levin, Harvey, Torres-Espin, Abel, Chou, Austin, Huie, J. Russell, Ferguson, Adam R., McCrea, Michael, Giacino, Joseph, Sundaram, Shivshankar, Markowitz, Amy J., Manley, Geoffrey T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Kaplan, Alan D.
Cheng, Qi
Mohan, K. Aditya
Nelson, Lindsay D.
Jain, Sonia
Levin, Harvey
Torres-Espin, Abel
Chou, Austin
Huie, J. Russell
Ferguson, Adam R.
McCrea, Michael
Giacino, Joseph
Sundaram, Shivshankar
Markowitz, Amy J.
Manley, Geoffrey T.
description Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1860779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1860779</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18607793</originalsourceid><addsrcrecordid>eNqNikFrwkAQRhdRUNT_MPQuJGmJybW2ogdpD3qWYR11YjIDO7u0_ffNQe9-l_d4fAM3KfKyWhRFVg0fntdvYzc3a7J-VZ_qcuKaHf_GFAh2eqIW1gE7-tFwg7MG2AdMHUb28B6QBbbSpPAH30EvosYGB2O5wIYi9YmENBmsWhb22ALKCb5S9NoRfGDEmRudsTWa3zl1L-vP_WqzUIt8NM-R_NWrCPl4zKsyWy7r16dO_zVASpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kaplan, Alan D. ; Cheng, Qi ; Mohan, K. Aditya ; Nelson, Lindsay D. ; Jain, Sonia ; Levin, Harvey ; Torres-Espin, Abel ; Chou, Austin ; Huie, J. Russell ; Ferguson, Adam R. ; McCrea, Michael ; Giacino, Joseph ; Sundaram, Shivshankar ; Markowitz, Amy J. ; Manley, Geoffrey T.</creator><creatorcontrib>Kaplan, Alan D. ; Cheng, Qi ; Mohan, K. Aditya ; Nelson, Lindsay D. ; Jain, Sonia ; Levin, Harvey ; Torres-Espin, Abel ; Chou, Austin ; Huie, J. Russell ; Ferguson, Adam R. ; McCrea, Michael ; Giacino, Joseph ; Sundaram, Shivshankar ; Markowitz, Amy J. ; Manley, Geoffrey T. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>biomedical imaging ; computed tomography ; data models ; history ; imaging ; latent variable models ; machine learning ; magnetic resonance imaging ; MATHEMATICS AND COMPUTING ; mixture models ; precision medicine ; predictive models ; traumatic brain injury</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-07, Vol.26 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000343285811 ; 0000000297878738 ; 0000000209216559 ; 0000000184081247 ; 0000000279169698 ; 0000000249997687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1860779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaplan, Alan D.</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Mohan, K. Aditya</creatorcontrib><creatorcontrib>Nelson, Lindsay D.</creatorcontrib><creatorcontrib>Jain, Sonia</creatorcontrib><creatorcontrib>Levin, Harvey</creatorcontrib><creatorcontrib>Torres-Espin, Abel</creatorcontrib><creatorcontrib>Chou, Austin</creatorcontrib><creatorcontrib>Huie, J. Russell</creatorcontrib><creatorcontrib>Ferguson, Adam R.</creatorcontrib><creatorcontrib>McCrea, Michael</creatorcontrib><creatorcontrib>Giacino, Joseph</creatorcontrib><creatorcontrib>Sundaram, Shivshankar</creatorcontrib><creatorcontrib>Markowitz, Amy J.</creatorcontrib><creatorcontrib>Manley, Geoffrey T.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</title><title>IEEE journal of biomedical and health informatics</title><description>Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.</description><subject>biomedical imaging</subject><subject>computed tomography</subject><subject>data models</subject><subject>history</subject><subject>imaging</subject><subject>latent variable models</subject><subject>machine learning</subject><subject>magnetic resonance imaging</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>mixture models</subject><subject>precision medicine</subject><subject>predictive models</subject><subject>traumatic brain injury</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNikFrwkAQRhdRUNT_MPQuJGmJybW2ogdpD3qWYR11YjIDO7u0_ffNQe9-l_d4fAM3KfKyWhRFVg0fntdvYzc3a7J-VZ_qcuKaHf_GFAh2eqIW1gE7-tFwg7MG2AdMHUb28B6QBbbSpPAH30EvosYGB2O5wIYi9YmENBmsWhb22ALKCb5S9NoRfGDEmRudsTWa3zl1L-vP_WqzUIt8NM-R_NWrCPl4zKsyWy7r16dO_zVASpA</recordid><startdate>20210726</startdate><enddate>20210726</enddate><creator>Kaplan, Alan D.</creator><creator>Cheng, Qi</creator><creator>Mohan, K. Aditya</creator><creator>Nelson, Lindsay D.</creator><creator>Jain, Sonia</creator><creator>Levin, Harvey</creator><creator>Torres-Espin, Abel</creator><creator>Chou, Austin</creator><creator>Huie, J. Russell</creator><creator>Ferguson, Adam R.</creator><creator>McCrea, Michael</creator><creator>Giacino, Joseph</creator><creator>Sundaram, Shivshankar</creator><creator>Markowitz, Amy J.</creator><creator>Manley, Geoffrey T.</creator><general>IEEE</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000343285811</orcidid><orcidid>https://orcid.org/0000000297878738</orcidid><orcidid>https://orcid.org/0000000209216559</orcidid><orcidid>https://orcid.org/0000000184081247</orcidid><orcidid>https://orcid.org/0000000279169698</orcidid><orcidid>https://orcid.org/0000000249997687</orcidid></search><sort><creationdate>20210726</creationdate><title>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</title><author>Kaplan, Alan D. ; Cheng, Qi ; Mohan, K. Aditya ; Nelson, Lindsay D. ; Jain, Sonia ; Levin, Harvey ; Torres-Espin, Abel ; Chou, Austin ; Huie, J. Russell ; Ferguson, Adam R. ; McCrea, Michael ; Giacino, Joseph ; Sundaram, Shivshankar ; Markowitz, Amy J. ; Manley, Geoffrey T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18607793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biomedical imaging</topic><topic>computed tomography</topic><topic>data models</topic><topic>history</topic><topic>imaging</topic><topic>latent variable models</topic><topic>machine learning</topic><topic>magnetic resonance imaging</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>mixture models</topic><topic>precision medicine</topic><topic>predictive models</topic><topic>traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, Alan D.</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Mohan, K. Aditya</creatorcontrib><creatorcontrib>Nelson, Lindsay D.</creatorcontrib><creatorcontrib>Jain, Sonia</creatorcontrib><creatorcontrib>Levin, Harvey</creatorcontrib><creatorcontrib>Torres-Espin, Abel</creatorcontrib><creatorcontrib>Chou, Austin</creatorcontrib><creatorcontrib>Huie, J. Russell</creatorcontrib><creatorcontrib>Ferguson, Adam R.</creatorcontrib><creatorcontrib>McCrea, Michael</creatorcontrib><creatorcontrib>Giacino, Joseph</creatorcontrib><creatorcontrib>Sundaram, Shivshankar</creatorcontrib><creatorcontrib>Markowitz, Amy J.</creatorcontrib><creatorcontrib>Manley, Geoffrey T.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, Alan D.</au><au>Cheng, Qi</au><au>Mohan, K. Aditya</au><au>Nelson, Lindsay D.</au><au>Jain, Sonia</au><au>Levin, Harvey</au><au>Torres-Espin, Abel</au><au>Chou, Austin</au><au>Huie, J. Russell</au><au>Ferguson, Adam R.</au><au>McCrea, Michael</au><au>Giacino, Joseph</au><au>Sundaram, Shivshankar</au><au>Markowitz, Amy J.</au><au>Manley, Geoffrey T.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><date>2021-07-26</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><issn>2168-2194</issn><eissn>2168-2208</eissn><abstract>Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.</abstract><cop>United States</cop><pub>IEEE</pub><orcidid>https://orcid.org/0000000343285811</orcidid><orcidid>https://orcid.org/0000000297878738</orcidid><orcidid>https://orcid.org/0000000209216559</orcidid><orcidid>https://orcid.org/0000000184081247</orcidid><orcidid>https://orcid.org/0000000279169698</orcidid><orcidid>https://orcid.org/0000000249997687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-07, Vol.26 (3)
issn 2168-2194
2168-2208
language eng
recordid cdi_osti_scitechconnect_1860779
source IEEE Electronic Library (IEL) Journals
subjects biomedical imaging
computed tomography
data models
history
imaging
latent variable models
machine learning
magnetic resonance imaging
MATHEMATICS AND COMPUTING
mixture models
precision medicine
predictive models
traumatic brain injury
title Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixture%20Model%20Framework%20for%20Traumatic%20Brain%20Injury%20Prognosis%20Using%20Heterogeneous%20Clinical%20and%20Outcome%20Data&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kaplan,%20Alan%20D.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-07-26&rft.volume=26&rft.issue=3&rft.issn=2168-2194&rft.eissn=2168-2208&rft_id=info:doi/&rft_dat=%3Costi%3E1860779%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18607793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true