Loading…
Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data
Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct dat...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2021-07, Vol.26 (3) |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Kaplan, Alan D. Cheng, Qi Mohan, K. Aditya Nelson, Lindsay D. Jain, Sonia Levin, Harvey Torres-Espin, Abel Chou, Austin Huie, J. Russell Ferguson, Adam R. McCrea, Michael Giacino, Joseph Sundaram, Shivshankar Markowitz, Amy J. Manley, Geoffrey T. |
description | Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1860779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1860779</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18607793</originalsourceid><addsrcrecordid>eNqNikFrwkAQRhdRUNT_MPQuJGmJybW2ogdpD3qWYR11YjIDO7u0_ffNQe9-l_d4fAM3KfKyWhRFVg0fntdvYzc3a7J-VZ_qcuKaHf_GFAh2eqIW1gE7-tFwg7MG2AdMHUb28B6QBbbSpPAH30EvosYGB2O5wIYi9YmENBmsWhb22ALKCb5S9NoRfGDEmRudsTWa3zl1L-vP_WqzUIt8NM-R_NWrCPl4zKsyWy7r16dO_zVASpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kaplan, Alan D. ; Cheng, Qi ; Mohan, K. Aditya ; Nelson, Lindsay D. ; Jain, Sonia ; Levin, Harvey ; Torres-Espin, Abel ; Chou, Austin ; Huie, J. Russell ; Ferguson, Adam R. ; McCrea, Michael ; Giacino, Joseph ; Sundaram, Shivshankar ; Markowitz, Amy J. ; Manley, Geoffrey T.</creator><creatorcontrib>Kaplan, Alan D. ; Cheng, Qi ; Mohan, K. Aditya ; Nelson, Lindsay D. ; Jain, Sonia ; Levin, Harvey ; Torres-Espin, Abel ; Chou, Austin ; Huie, J. Russell ; Ferguson, Adam R. ; McCrea, Michael ; Giacino, Joseph ; Sundaram, Shivshankar ; Markowitz, Amy J. ; Manley, Geoffrey T. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>biomedical imaging ; computed tomography ; data models ; history ; imaging ; latent variable models ; machine learning ; magnetic resonance imaging ; MATHEMATICS AND COMPUTING ; mixture models ; precision medicine ; predictive models ; traumatic brain injury</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-07, Vol.26 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000343285811 ; 0000000297878738 ; 0000000209216559 ; 0000000184081247 ; 0000000279169698 ; 0000000249997687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1860779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaplan, Alan D.</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Mohan, K. Aditya</creatorcontrib><creatorcontrib>Nelson, Lindsay D.</creatorcontrib><creatorcontrib>Jain, Sonia</creatorcontrib><creatorcontrib>Levin, Harvey</creatorcontrib><creatorcontrib>Torres-Espin, Abel</creatorcontrib><creatorcontrib>Chou, Austin</creatorcontrib><creatorcontrib>Huie, J. Russell</creatorcontrib><creatorcontrib>Ferguson, Adam R.</creatorcontrib><creatorcontrib>McCrea, Michael</creatorcontrib><creatorcontrib>Giacino, Joseph</creatorcontrib><creatorcontrib>Sundaram, Shivshankar</creatorcontrib><creatorcontrib>Markowitz, Amy J.</creatorcontrib><creatorcontrib>Manley, Geoffrey T.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</title><title>IEEE journal of biomedical and health informatics</title><description>Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.</description><subject>biomedical imaging</subject><subject>computed tomography</subject><subject>data models</subject><subject>history</subject><subject>imaging</subject><subject>latent variable models</subject><subject>machine learning</subject><subject>magnetic resonance imaging</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>mixture models</subject><subject>precision medicine</subject><subject>predictive models</subject><subject>traumatic brain injury</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNikFrwkAQRhdRUNT_MPQuJGmJybW2ogdpD3qWYR11YjIDO7u0_ffNQe9-l_d4fAM3KfKyWhRFVg0fntdvYzc3a7J-VZ_qcuKaHf_GFAh2eqIW1gE7-tFwg7MG2AdMHUb28B6QBbbSpPAH30EvosYGB2O5wIYi9YmENBmsWhb22ALKCb5S9NoRfGDEmRudsTWa3zl1L-vP_WqzUIt8NM-R_NWrCPl4zKsyWy7r16dO_zVASpA</recordid><startdate>20210726</startdate><enddate>20210726</enddate><creator>Kaplan, Alan D.</creator><creator>Cheng, Qi</creator><creator>Mohan, K. Aditya</creator><creator>Nelson, Lindsay D.</creator><creator>Jain, Sonia</creator><creator>Levin, Harvey</creator><creator>Torres-Espin, Abel</creator><creator>Chou, Austin</creator><creator>Huie, J. Russell</creator><creator>Ferguson, Adam R.</creator><creator>McCrea, Michael</creator><creator>Giacino, Joseph</creator><creator>Sundaram, Shivshankar</creator><creator>Markowitz, Amy J.</creator><creator>Manley, Geoffrey T.</creator><general>IEEE</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000343285811</orcidid><orcidid>https://orcid.org/0000000297878738</orcidid><orcidid>https://orcid.org/0000000209216559</orcidid><orcidid>https://orcid.org/0000000184081247</orcidid><orcidid>https://orcid.org/0000000279169698</orcidid><orcidid>https://orcid.org/0000000249997687</orcidid></search><sort><creationdate>20210726</creationdate><title>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</title><author>Kaplan, Alan D. ; Cheng, Qi ; Mohan, K. Aditya ; Nelson, Lindsay D. ; Jain, Sonia ; Levin, Harvey ; Torres-Espin, Abel ; Chou, Austin ; Huie, J. Russell ; Ferguson, Adam R. ; McCrea, Michael ; Giacino, Joseph ; Sundaram, Shivshankar ; Markowitz, Amy J. ; Manley, Geoffrey T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18607793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biomedical imaging</topic><topic>computed tomography</topic><topic>data models</topic><topic>history</topic><topic>imaging</topic><topic>latent variable models</topic><topic>machine learning</topic><topic>magnetic resonance imaging</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>mixture models</topic><topic>precision medicine</topic><topic>predictive models</topic><topic>traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaplan, Alan D.</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Mohan, K. Aditya</creatorcontrib><creatorcontrib>Nelson, Lindsay D.</creatorcontrib><creatorcontrib>Jain, Sonia</creatorcontrib><creatorcontrib>Levin, Harvey</creatorcontrib><creatorcontrib>Torres-Espin, Abel</creatorcontrib><creatorcontrib>Chou, Austin</creatorcontrib><creatorcontrib>Huie, J. Russell</creatorcontrib><creatorcontrib>Ferguson, Adam R.</creatorcontrib><creatorcontrib>McCrea, Michael</creatorcontrib><creatorcontrib>Giacino, Joseph</creatorcontrib><creatorcontrib>Sundaram, Shivshankar</creatorcontrib><creatorcontrib>Markowitz, Amy J.</creatorcontrib><creatorcontrib>Manley, Geoffrey T.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaplan, Alan D.</au><au>Cheng, Qi</au><au>Mohan, K. Aditya</au><au>Nelson, Lindsay D.</au><au>Jain, Sonia</au><au>Levin, Harvey</au><au>Torres-Espin, Abel</au><au>Chou, Austin</au><au>Huie, J. Russell</au><au>Ferguson, Adam R.</au><au>McCrea, Michael</au><au>Giacino, Joseph</au><au>Sundaram, Shivshankar</au><au>Markowitz, Amy J.</au><au>Manley, Geoffrey T.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><date>2021-07-26</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><issn>2168-2194</issn><eissn>2168-2208</eissn><abstract>Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients’ recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.</abstract><cop>United States</cop><pub>IEEE</pub><orcidid>https://orcid.org/0000000343285811</orcidid><orcidid>https://orcid.org/0000000297878738</orcidid><orcidid>https://orcid.org/0000000209216559</orcidid><orcidid>https://orcid.org/0000000184081247</orcidid><orcidid>https://orcid.org/0000000279169698</orcidid><orcidid>https://orcid.org/0000000249997687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2021-07, Vol.26 (3) |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_osti_scitechconnect_1860779 |
source | IEEE Electronic Library (IEL) Journals |
subjects | biomedical imaging computed tomography data models history imaging latent variable models machine learning magnetic resonance imaging MATHEMATICS AND COMPUTING mixture models precision medicine predictive models traumatic brain injury |
title | Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixture%20Model%20Framework%20for%20Traumatic%20Brain%20Injury%20Prognosis%20Using%20Heterogeneous%20Clinical%20and%20Outcome%20Data&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Kaplan,%20Alan%20D.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-07-26&rft.volume=26&rft.issue=3&rft.issn=2168-2194&rft.eissn=2168-2208&rft_id=info:doi/&rft_dat=%3Costi%3E1860779%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18607793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |