Loading…

Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films

Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structu...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2021-12, Vol.119 (24)
Main Authors: Harrelson, Thomas F., Sheridan, Evan, Kennedy, Ellis, Vinson, John, N'Diaye, Alpha T., Altoé, M. Virginia P., Schwartzberg, Adam, Siddiqi, Irfan, Ogletree, D. Frank, Scott, Mary C., Griffin, Sinéad M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 119
creator Harrelson, Thomas F.
Sheridan, Evan
Kennedy, Ellis
Vinson, John
N'Diaye, Alpha T.
Altoé, M. Virginia P.
Schwartzberg, Adam
Siddiqi, Irfan
Ogletree, D. Frank
Scott, Mary C.
Griffin, Sinéad M.
description Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structure and properties of the circuit materials is needed to identify, understand, and mitigate material-based decoherence channels. Here, we characterize the atomic structure of the native oxide film formed on Nb resonators by comparing fluctuation electron microscopy experiments to density functional theory calculations, finding that an amorphous layer is consistent with an Nb2O5 stoichiometry. Comparing x-ray absorption measurements at the Oxygen K edge with first-principles calculations, we find evidence of d-type magnetic impurities in our sample, known to cause impedance in proximal superconductors. This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors and shows that soft x-ray absorption can fingerprint magnetic impurities in these superconducting systems.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1861062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861062</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18610623</originalsourceid><addsrcrecordid>eNqNjU0KwjAQhbNQsP7cYXBfaC0tupaKB3BfYpLakSRTMgmIpzeCB3D1-OB77y1EUVVVU3antl6JNfMzY3tomkJgb5NCLSP6B8TJgCUlLchIDhVIr8FYo2Ign5FjSCqmYIBGkI7CPFFioBdqfBsNnGYTFHmdre-eR7pjcjCidbwVy1FaNrtfbsT-0t_O15I44sAKo1FTLvt8N9THrq66Q_OX9AFQZ0kL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Harrelson, Thomas F. ; Sheridan, Evan ; Kennedy, Ellis ; Vinson, John ; N'Diaye, Alpha T. ; Altoé, M. Virginia P. ; Schwartzberg, Adam ; Siddiqi, Irfan ; Ogletree, D. Frank ; Scott, Mary C. ; Griffin, Sinéad M.</creator><creatorcontrib>Harrelson, Thomas F. ; Sheridan, Evan ; Kennedy, Ellis ; Vinson, John ; N'Diaye, Alpha T. ; Altoé, M. Virginia P. ; Schwartzberg, Adam ; Siddiqi, Irfan ; Ogletree, D. Frank ; Scott, Mary C. ; Griffin, Sinéad M. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structure and properties of the circuit materials is needed to identify, understand, and mitigate material-based decoherence channels. Here, we characterize the atomic structure of the native oxide film formed on Nb resonators by comparing fluctuation electron microscopy experiments to density functional theory calculations, finding that an amorphous layer is consistent with an Nb2O5 stoichiometry. Comparing x-ray absorption measurements at the Oxygen K edge with first-principles calculations, we find evidence of d-type magnetic impurities in our sample, known to cause impedance in proximal superconductors. This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors and shows that soft x-ray absorption can fingerprint magnetic impurities in these superconducting systems.</description><identifier>ISSN: 0003-6951</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; density functional theory ; electron microscopy ; electronic structure ; emerging qubit systems - novel materials, encodings, and architectures ; first-principle calculations ; machine learning ; quantum computing ; quantum information ; superconductors ; thin films ; x-ray absorption spectroscopy</subject><ispartof>Applied physics letters, 2021-12, Vol.119 (24)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000299434866 ; 0000000156756059 ; 0000000276197060 ; 0000000216162595 ; 0000000286894273 ; 0000000194299776 ; 0000000281590182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1861062$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrelson, Thomas F.</creatorcontrib><creatorcontrib>Sheridan, Evan</creatorcontrib><creatorcontrib>Kennedy, Ellis</creatorcontrib><creatorcontrib>Vinson, John</creatorcontrib><creatorcontrib>N'Diaye, Alpha T.</creatorcontrib><creatorcontrib>Altoé, M. Virginia P.</creatorcontrib><creatorcontrib>Schwartzberg, Adam</creatorcontrib><creatorcontrib>Siddiqi, Irfan</creatorcontrib><creatorcontrib>Ogletree, D. Frank</creatorcontrib><creatorcontrib>Scott, Mary C.</creatorcontrib><creatorcontrib>Griffin, Sinéad M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films</title><title>Applied physics letters</title><description>Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structure and properties of the circuit materials is needed to identify, understand, and mitigate material-based decoherence channels. Here, we characterize the atomic structure of the native oxide film formed on Nb resonators by comparing fluctuation electron microscopy experiments to density functional theory calculations, finding that an amorphous layer is consistent with an Nb2O5 stoichiometry. Comparing x-ray absorption measurements at the Oxygen K edge with first-principles calculations, we find evidence of d-type magnetic impurities in our sample, known to cause impedance in proximal superconductors. This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors and shows that soft x-ray absorption can fingerprint magnetic impurities in these superconducting systems.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>density functional theory</subject><subject>electron microscopy</subject><subject>electronic structure</subject><subject>emerging qubit systems - novel materials, encodings, and architectures</subject><subject>first-principle calculations</subject><subject>machine learning</subject><subject>quantum computing</subject><subject>quantum information</subject><subject>superconductors</subject><subject>thin films</subject><subject>x-ray absorption spectroscopy</subject><issn>0003-6951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjU0KwjAQhbNQsP7cYXBfaC0tupaKB3BfYpLakSRTMgmIpzeCB3D1-OB77y1EUVVVU3antl6JNfMzY3tomkJgb5NCLSP6B8TJgCUlLchIDhVIr8FYo2Ign5FjSCqmYIBGkI7CPFFioBdqfBsNnGYTFHmdre-eR7pjcjCidbwVy1FaNrtfbsT-0t_O15I44sAKo1FTLvt8N9THrq66Q_OX9AFQZ0kL</recordid><startdate>20211216</startdate><enddate>20211216</enddate><creator>Harrelson, Thomas F.</creator><creator>Sheridan, Evan</creator><creator>Kennedy, Ellis</creator><creator>Vinson, John</creator><creator>N'Diaye, Alpha T.</creator><creator>Altoé, M. Virginia P.</creator><creator>Schwartzberg, Adam</creator><creator>Siddiqi, Irfan</creator><creator>Ogletree, D. Frank</creator><creator>Scott, Mary C.</creator><creator>Griffin, Sinéad M.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000299434866</orcidid><orcidid>https://orcid.org/0000000156756059</orcidid><orcidid>https://orcid.org/0000000276197060</orcidid><orcidid>https://orcid.org/0000000216162595</orcidid><orcidid>https://orcid.org/0000000286894273</orcidid><orcidid>https://orcid.org/0000000194299776</orcidid><orcidid>https://orcid.org/0000000281590182</orcidid></search><sort><creationdate>20211216</creationdate><title>Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films</title><author>Harrelson, Thomas F. ; Sheridan, Evan ; Kennedy, Ellis ; Vinson, John ; N'Diaye, Alpha T. ; Altoé, M. Virginia P. ; Schwartzberg, Adam ; Siddiqi, Irfan ; Ogletree, D. Frank ; Scott, Mary C. ; Griffin, Sinéad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18610623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>density functional theory</topic><topic>electron microscopy</topic><topic>electronic structure</topic><topic>emerging qubit systems - novel materials, encodings, and architectures</topic><topic>first-principle calculations</topic><topic>machine learning</topic><topic>quantum computing</topic><topic>quantum information</topic><topic>superconductors</topic><topic>thin films</topic><topic>x-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrelson, Thomas F.</creatorcontrib><creatorcontrib>Sheridan, Evan</creatorcontrib><creatorcontrib>Kennedy, Ellis</creatorcontrib><creatorcontrib>Vinson, John</creatorcontrib><creatorcontrib>N'Diaye, Alpha T.</creatorcontrib><creatorcontrib>Altoé, M. Virginia P.</creatorcontrib><creatorcontrib>Schwartzberg, Adam</creatorcontrib><creatorcontrib>Siddiqi, Irfan</creatorcontrib><creatorcontrib>Ogletree, D. Frank</creatorcontrib><creatorcontrib>Scott, Mary C.</creatorcontrib><creatorcontrib>Griffin, Sinéad M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrelson, Thomas F.</au><au>Sheridan, Evan</au><au>Kennedy, Ellis</au><au>Vinson, John</au><au>N'Diaye, Alpha T.</au><au>Altoé, M. Virginia P.</au><au>Schwartzberg, Adam</au><au>Siddiqi, Irfan</au><au>Ogletree, D. Frank</au><au>Scott, Mary C.</au><au>Griffin, Sinéad M.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films</atitle><jtitle>Applied physics letters</jtitle><date>2021-12-16</date><risdate>2021</risdate><volume>119</volume><issue>24</issue><issn>0003-6951</issn><abstract>Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structure and properties of the circuit materials is needed to identify, understand, and mitigate material-based decoherence channels. Here, we characterize the atomic structure of the native oxide film formed on Nb resonators by comparing fluctuation electron microscopy experiments to density functional theory calculations, finding that an amorphous layer is consistent with an Nb2O5 stoichiometry. Comparing x-ray absorption measurements at the Oxygen K edge with first-principles calculations, we find evidence of d-type magnetic impurities in our sample, known to cause impedance in proximal superconductors. This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors and shows that soft x-ray absorption can fingerprint magnetic impurities in these superconducting systems.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000299434866</orcidid><orcidid>https://orcid.org/0000000156756059</orcidid><orcidid>https://orcid.org/0000000276197060</orcidid><orcidid>https://orcid.org/0000000216162595</orcidid><orcidid>https://orcid.org/0000000286894273</orcidid><orcidid>https://orcid.org/0000000194299776</orcidid><orcidid>https://orcid.org/0000000281590182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-12, Vol.119 (24)
issn 0003-6951
language eng
recordid cdi_osti_scitechconnect_1861062
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
density functional theory
electron microscopy
electronic structure
emerging qubit systems - novel materials, encodings, and architectures
first-principle calculations
machine learning
quantum computing
quantum information
superconductors
thin films
x-ray absorption spectroscopy
title Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20local%20atomic%20and%20electronic%20structure%20of%20amorphous%20oxidized%20superconducting%20niobium%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Harrelson,%20Thomas%20F.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-12-16&rft.volume=119&rft.issue=24&rft.issn=0003-6951&rft_id=info:doi/&rft_dat=%3Costi%3E1861062%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18610623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true