Loading…
Gastight rotating cylinder electrode: Toward decoupling mass transport and intrinsic kinetics in electrocatalysis
Decoupling and understanding the various mass, charge, and heat transport phenomena involved in the electrocatalytic transformation of small molecules (i.e., CO2, CO, H2, N2, NH3, O2, and CH4) is challenging but it can be readily achieved using dimensionless quantities (i.e., Reynolds, Sherwood, Sch...
Saved in:
Published in: | AIChE journal 2022-05, Vol.68 (5), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Decoupling and understanding the various mass, charge, and heat transport phenomena involved in the electrocatalytic transformation of small molecules (i.e., CO2, CO, H2, N2, NH3, O2, and CH4) is challenging but it can be readily achieved using dimensionless quantities (i.e., Reynolds, Sherwood, Schmidt, Damköhler, Nusselt, Prandtl, and Peclet Numbers) to simplify the characterization of systems with multiple interacting physical phenomena. Herein we report the development of a gastight rotating cylinder electrode cell with well‐defined mass transport characteristics that can be applied to experimentally decouple mass transfer effects from intrinsic kinetics in electrocatalytic systems. The gastight rotating cylinder electrode cell enables the dimensionless analysis of electrocatalytic systems and should enable the rigorous research and development of electrocatalytic technologies. |
---|---|
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.17605 |