Loading…
Thermodynamically Driven Synthetic Optimization for Cation‐Disordered Rock Salt Cathodes
Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization...
Saved in:
Published in: | Advanced energy materials 2022-06, Vol.12 (21), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3 |
container_end_page | n/a |
container_issue | 21 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Cai, Zijian Zhang, Ya‐Qian Lun, Zhengyan Ouyang, Bin Gallington, Leighanne C. Sun, Yingzhi Hau, Han‐Ming Chen, Yu Scott, Mary C. Ceder, Gerbrand |
description | Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization of materials through simple modifications of the synthesis process. In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt (a promising next‐generation Li‐ion cathode material) at the scale of both the long‐range crystal structure and the short‐range atomic structure using various in situ and ex situ techniques, including transmission electron microscopy, X‐ray diffraction, and pair distribution function analysis. An optimization strategy is proposed for the synthesis protocol, leading to a remarkably enhanced capacity (specific energy) of 313 mAh g−1 (987 Wh kg−1) at a low rate (20 mA g−1), with a capacity of more than 140 mAh g−1 retained even at a very high cycling rate of 2000 mA g−1. This strategy is further rationalized using ab initio calculations, and important opportunities for synthetic optimization demonstrated in this study are highlighted.
In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt Li1.2Mn0.55Ti0.25O1.85F0.15 at the scale of both the long‐range crystal structure and the short‐range atomic structure. The electrochemical performance can be optimized by suppressing the formation of unfavorable short‐range order during the synthesis. |
doi_str_mv | 10.1002/aenm.202103923 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1863455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672226149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxiMEElXpyhzBnOLYbhqPVVv-SIVKtCwsVmJfFJckLrYLChOPwDPyJLgEwcgtd9L9vtN3XxCcxmgYI4QvMmjqIUY4RoRhchD04iSmUZJSdPg7E3wcDKzdIF-UeZL0gsd1CabWsm2yWomsqtpwZtQLNOGqbVwJTolwuXWqVm-ZU7oJC23C6ff4-f4xU1YbCQZkeK_FU7jKKrffllqCPQmOiqyyMPjp_eDhcr6eXkeL5dXNdLKIBEkpidK4kBSNWS7B288hAcmSnKAkZQmThLK0AJnj1P8gsBgThPGIUYLTgmFaiIL0g7PurrZOcSuUA1EK3TQgHI_ThNDRyEPnHbQ1-nkH1vGN3pnG--I4GWOM_XnmqWFHCaOtNVDwrVF1ZloeI77Pme9z5r85ewHrBK-qgvYfmk_md7d_2i-EuoHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672226149</pqid></control><display><type>article</type><title>Thermodynamically Driven Synthetic Optimization for Cation‐Disordered Rock Salt Cathodes</title><source>Wiley</source><creator>Cai, Zijian ; Zhang, Ya‐Qian ; Lun, Zhengyan ; Ouyang, Bin ; Gallington, Leighanne C. ; Sun, Yingzhi ; Hau, Han‐Ming ; Chen, Yu ; Scott, Mary C. ; Ceder, Gerbrand</creator><creatorcontrib>Cai, Zijian ; Zhang, Ya‐Qian ; Lun, Zhengyan ; Ouyang, Bin ; Gallington, Leighanne C. ; Sun, Yingzhi ; Hau, Han‐Ming ; Chen, Yu ; Scott, Mary C. ; Ceder, Gerbrand</creatorcontrib><description>Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization of materials through simple modifications of the synthesis process. In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt (a promising next‐generation Li‐ion cathode material) at the scale of both the long‐range crystal structure and the short‐range atomic structure using various in situ and ex situ techniques, including transmission electron microscopy, X‐ray diffraction, and pair distribution function analysis. An optimization strategy is proposed for the synthesis protocol, leading to a remarkably enhanced capacity (specific energy) of 313 mAh g−1 (987 Wh kg−1) at a low rate (20 mA g−1), with a capacity of more than 140 mAh g−1 retained even at a very high cycling rate of 2000 mA g−1. This strategy is further rationalized using ab initio calculations, and important opportunities for synthetic optimization demonstrated in this study are highlighted.
In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt Li1.2Mn0.55Ti0.25O1.85F0.15 at the scale of both the long‐range crystal structure and the short‐range atomic structure. The electrochemical performance can be optimized by suppressing the formation of unfavorable short‐range order during the synthesis.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202103923</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Cathodes ; Crystal structure ; disordered rock salts ; Distribution functions ; Electrode materials ; Function analysis ; Li‐ion batteries ; Optimization ; short‐range order ; Specific energy ; Synthesis ; synthesis science</subject><ispartof>Advanced energy materials, 2022-06, Vol.12 (21), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3</citedby><cites>FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3</cites><orcidid>0000-0001-9275-3605 ; 0000-0002-4908-3180 ; 0000-0002-0186-6864 ; 0000-0003-3559-6863 ; 0000-0002-0383-7522 ; 0000-0002-8181-6815 ; 0000000249083180 ; 0000000201866864 ; 0000000192753605 ; 0000000335596863 ; 0000000281816815 ; 0000000203837522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1863455$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Zijian</creatorcontrib><creatorcontrib>Zhang, Ya‐Qian</creatorcontrib><creatorcontrib>Lun, Zhengyan</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Gallington, Leighanne C.</creatorcontrib><creatorcontrib>Sun, Yingzhi</creatorcontrib><creatorcontrib>Hau, Han‐Ming</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Scott, Mary C.</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><title>Thermodynamically Driven Synthetic Optimization for Cation‐Disordered Rock Salt Cathodes</title><title>Advanced energy materials</title><description>Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization of materials through simple modifications of the synthesis process. In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt (a promising next‐generation Li‐ion cathode material) at the scale of both the long‐range crystal structure and the short‐range atomic structure using various in situ and ex situ techniques, including transmission electron microscopy, X‐ray diffraction, and pair distribution function analysis. An optimization strategy is proposed for the synthesis protocol, leading to a remarkably enhanced capacity (specific energy) of 313 mAh g−1 (987 Wh kg−1) at a low rate (20 mA g−1), with a capacity of more than 140 mAh g−1 retained even at a very high cycling rate of 2000 mA g−1. This strategy is further rationalized using ab initio calculations, and important opportunities for synthetic optimization demonstrated in this study are highlighted.
In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt Li1.2Mn0.55Ti0.25O1.85F0.15 at the scale of both the long‐range crystal structure and the short‐range atomic structure. The electrochemical performance can be optimized by suppressing the formation of unfavorable short‐range order during the synthesis.</description><subject>Atomic structure</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>disordered rock salts</subject><subject>Distribution functions</subject><subject>Electrode materials</subject><subject>Function analysis</subject><subject>Li‐ion batteries</subject><subject>Optimization</subject><subject>short‐range order</subject><subject>Specific energy</subject><subject>Synthesis</subject><subject>synthesis science</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQxiMEElXpyhzBnOLYbhqPVVv-SIVKtCwsVmJfFJckLrYLChOPwDPyJLgEwcgtd9L9vtN3XxCcxmgYI4QvMmjqIUY4RoRhchD04iSmUZJSdPg7E3wcDKzdIF-UeZL0gsd1CabWsm2yWomsqtpwZtQLNOGqbVwJTolwuXWqVm-ZU7oJC23C6ff4-f4xU1YbCQZkeK_FU7jKKrffllqCPQmOiqyyMPjp_eDhcr6eXkeL5dXNdLKIBEkpidK4kBSNWS7B288hAcmSnKAkZQmThLK0AJnj1P8gsBgThPGIUYLTgmFaiIL0g7PurrZOcSuUA1EK3TQgHI_ThNDRyEPnHbQ1-nkH1vGN3pnG--I4GWOM_XnmqWFHCaOtNVDwrVF1ZloeI77Pme9z5r85ewHrBK-qgvYfmk_md7d_2i-EuoHM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Cai, Zijian</creator><creator>Zhang, Ya‐Qian</creator><creator>Lun, Zhengyan</creator><creator>Ouyang, Bin</creator><creator>Gallington, Leighanne C.</creator><creator>Sun, Yingzhi</creator><creator>Hau, Han‐Ming</creator><creator>Chen, Yu</creator><creator>Scott, Mary C.</creator><creator>Ceder, Gerbrand</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-4908-3180</orcidid><orcidid>https://orcid.org/0000-0002-0186-6864</orcidid><orcidid>https://orcid.org/0000-0003-3559-6863</orcidid><orcidid>https://orcid.org/0000-0002-0383-7522</orcidid><orcidid>https://orcid.org/0000-0002-8181-6815</orcidid><orcidid>https://orcid.org/0000000249083180</orcidid><orcidid>https://orcid.org/0000000201866864</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000335596863</orcidid><orcidid>https://orcid.org/0000000281816815</orcidid><orcidid>https://orcid.org/0000000203837522</orcidid></search><sort><creationdate>20220601</creationdate><title>Thermodynamically Driven Synthetic Optimization for Cation‐Disordered Rock Salt Cathodes</title><author>Cai, Zijian ; Zhang, Ya‐Qian ; Lun, Zhengyan ; Ouyang, Bin ; Gallington, Leighanne C. ; Sun, Yingzhi ; Hau, Han‐Ming ; Chen, Yu ; Scott, Mary C. ; Ceder, Gerbrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic structure</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>disordered rock salts</topic><topic>Distribution functions</topic><topic>Electrode materials</topic><topic>Function analysis</topic><topic>Li‐ion batteries</topic><topic>Optimization</topic><topic>short‐range order</topic><topic>Specific energy</topic><topic>Synthesis</topic><topic>synthesis science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zijian</creatorcontrib><creatorcontrib>Zhang, Ya‐Qian</creatorcontrib><creatorcontrib>Lun, Zhengyan</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Gallington, Leighanne C.</creatorcontrib><creatorcontrib>Sun, Yingzhi</creatorcontrib><creatorcontrib>Hau, Han‐Ming</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Scott, Mary C.</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zijian</au><au>Zhang, Ya‐Qian</au><au>Lun, Zhengyan</au><au>Ouyang, Bin</au><au>Gallington, Leighanne C.</au><au>Sun, Yingzhi</au><au>Hau, Han‐Ming</au><au>Chen, Yu</au><au>Scott, Mary C.</au><au>Ceder, Gerbrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamically Driven Synthetic Optimization for Cation‐Disordered Rock Salt Cathodes</atitle><jtitle>Advanced energy materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>12</volume><issue>21</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization of materials through simple modifications of the synthesis process. In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt (a promising next‐generation Li‐ion cathode material) at the scale of both the long‐range crystal structure and the short‐range atomic structure using various in situ and ex situ techniques, including transmission electron microscopy, X‐ray diffraction, and pair distribution function analysis. An optimization strategy is proposed for the synthesis protocol, leading to a remarkably enhanced capacity (specific energy) of 313 mAh g−1 (987 Wh kg−1) at a low rate (20 mA g−1), with a capacity of more than 140 mAh g−1 retained even at a very high cycling rate of 2000 mA g−1. This strategy is further rationalized using ab initio calculations, and important opportunities for synthetic optimization demonstrated in this study are highlighted.
In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt Li1.2Mn0.55Ti0.25O1.85F0.15 at the scale of both the long‐range crystal structure and the short‐range atomic structure. The electrochemical performance can be optimized by suppressing the formation of unfavorable short‐range order during the synthesis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202103923</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-4908-3180</orcidid><orcidid>https://orcid.org/0000-0002-0186-6864</orcidid><orcidid>https://orcid.org/0000-0003-3559-6863</orcidid><orcidid>https://orcid.org/0000-0002-0383-7522</orcidid><orcidid>https://orcid.org/0000-0002-8181-6815</orcidid><orcidid>https://orcid.org/0000000249083180</orcidid><orcidid>https://orcid.org/0000000201866864</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000335596863</orcidid><orcidid>https://orcid.org/0000000281816815</orcidid><orcidid>https://orcid.org/0000000203837522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-06, Vol.12 (21), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1863455 |
source | Wiley |
subjects | Atomic structure Cathodes Crystal structure disordered rock salts Distribution functions Electrode materials Function analysis Li‐ion batteries Optimization short‐range order Specific energy Synthesis synthesis science |
title | Thermodynamically Driven Synthetic Optimization for Cation‐Disordered Rock Salt Cathodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamically%20Driven%20Synthetic%20Optimization%20for%20Cation%E2%80%90Disordered%20Rock%20Salt%20Cathodes&rft.jtitle=Advanced%20energy%20materials&rft.au=Cai,%20Zijian&rft.date=2022-06-01&rft.volume=12&rft.issue=21&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202103923&rft_dat=%3Cproquest_osti_%3E2672226149%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3843-81fd4079bde021be6ed96b3068969d3498fedb28614c2c73022594328f924fcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672226149&rft_id=info:pmid/&rfr_iscdi=true |