Loading…
Modulating Electron Beam–Sample Interactions in Imaging and Diffraction Modes by Dose Fractionation with Low Dose Rates
Technological opportunities are explored to enhance detection schemes in transmission electron microscopy (TEM) that build on the detection of single-electron scattering events across the typical spectrum of interdisciplinary applications. They range from imaging with high spatiotemporal resolution...
Saved in:
Published in: | Microscopy and microanalysis 2021-12, Vol.27 (6), p.1420-1430 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53 |
container_end_page | 1430 |
container_issue | 6 |
container_start_page | 1420 |
container_title | Microscopy and microanalysis |
container_volume | 27 |
creator | Kisielowski, Christian Specht, Petra Rozeveld, Steven J. Kang, Joo Fielitz, Alyssa J. Barton, David Salazar, Anthony C. Dubon, Oscar D. Van Dyck, Dirk Yancey, David F. |
description | Technological opportunities are explored to enhance detection schemes in transmission electron microscopy (TEM) that build on the detection of single-electron scattering events across the typical spectrum of interdisciplinary applications. They range from imaging with high spatiotemporal resolution to diffraction experiments at the window to quantum mechanics, where the wave-particle dualism of single electrons is evident. At the ultimate detection limit, where isolated electrons are delivered to interact with solids, we find that the beam current dominates damage processes instead of the deposited electron charge, which can be exploited to modify electron beam-induced sample alterations. The results are explained by assuming that all electron scattering are inelastic and include phonon excitation that can hardly be distinguished from elastic electron scattering. Consequently, a coherence length and a related coherence time exist that reflect the interaction of the electron with the sample and change linearly with energy loss. Phonon excitations are of small energy ( |
doi_str_mv | 10.1017/S143192762101268X |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1863788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S143192762101268X</cupid><sourcerecordid>2609591761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhSMEEqVwAHYWrAN2nNjOEvoDlYqQKEjsoonjtK4au9iuqu64AzfkJKQ_EgvEyuN533ua0UTRJcE3BBN-OyEpJXnCWdJ-Eybej6JO28piQUh2vKtJvNVPozPv5xhjijnrRJsnW60WELSZosFCyeCsQfcKmu_Prwk0y4VCIxOUAxm0NR5pg0YNTLc4mAr1dV0fNNQmKY_KDepbr9Dw0IadttZhhsZ2vddeICh_Hp3UsPDq4vB2o7fh4LX3GI-fH0a9u3EsqeAhBlZXdSp4qoSiVcYkTqGEkjJGVC5ZmgpKKOMSMpGnZV3mRFYlTxOQEmoGGe1GV_tc64MuvNRByZm0xrTLFkQwyoVooes9tHT2Y6V8KOZ25Uw7V5EwnGc54Yy0FNlT0lnvnaqLpdMNuE1BcLE9Q_HnDK2HHjzQlE5XU_Ub_b_rB_a0i6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609591761</pqid></control><display><type>article</type><title>Modulating Electron Beam–Sample Interactions in Imaging and Diffraction Modes by Dose Fractionation with Low Dose Rates</title><source>Cambridge University Press</source><creator>Kisielowski, Christian ; Specht, Petra ; Rozeveld, Steven J. ; Kang, Joo ; Fielitz, Alyssa J. ; Barton, David ; Salazar, Anthony C. ; Dubon, Oscar D. ; Van Dyck, Dirk ; Yancey, David F.</creator><creatorcontrib>Kisielowski, Christian ; Specht, Petra ; Rozeveld, Steven J. ; Kang, Joo ; Fielitz, Alyssa J. ; Barton, David ; Salazar, Anthony C. ; Dubon, Oscar D. ; Van Dyck, Dirk ; Yancey, David F. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Technological opportunities are explored to enhance detection schemes in transmission electron microscopy (TEM) that build on the detection of single-electron scattering events across the typical spectrum of interdisciplinary applications. They range from imaging with high spatiotemporal resolution to diffraction experiments at the window to quantum mechanics, where the wave-particle dualism of single electrons is evident. At the ultimate detection limit, where isolated electrons are delivered to interact with solids, we find that the beam current dominates damage processes instead of the deposited electron charge, which can be exploited to modify electron beam-induced sample alterations. The results are explained by assuming that all electron scattering are inelastic and include phonon excitation that can hardly be distinguished from elastic electron scattering. Consequently, a coherence length and a related coherence time exist that reflect the interaction of the electron with the sample and change linearly with energy loss. Phonon excitations are of small energy (<100 meV), but they occur frequently and scale with beam current in the irradiated area, which is why we can detect their contribution to beam-induced sample alterations and damage.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S143192762101268X</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>beam–sample interactions ; Coherence length ; Coherent scattering ; cryogenic electron microscopy (cryo-EM) ; Crystals ; Damage ; Dosage ; Elastic scattering ; Electron beams ; Energy dissipation ; Energy loss ; Excitation ; Fractionation ; high-resolution transmission electron microscopy (HRTEM) ; inelastic electron scattering ; Inelastic scattering ; OTHER INSTRUMENTATION ; Phonons ; Quantum mechanics ; Single electrons ; Software and Instrumentation ; temporal coherence ; Transmission electron microscopy ; Wave diffraction</subject><ispartof>Microscopy and microanalysis, 2021-12, Vol.27 (6), p.1420-1430</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53</citedby><cites>FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S143192762101268X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1863788$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kisielowski, Christian</creatorcontrib><creatorcontrib>Specht, Petra</creatorcontrib><creatorcontrib>Rozeveld, Steven J.</creatorcontrib><creatorcontrib>Kang, Joo</creatorcontrib><creatorcontrib>Fielitz, Alyssa J.</creatorcontrib><creatorcontrib>Barton, David</creatorcontrib><creatorcontrib>Salazar, Anthony C.</creatorcontrib><creatorcontrib>Dubon, Oscar D.</creatorcontrib><creatorcontrib>Van Dyck, Dirk</creatorcontrib><creatorcontrib>Yancey, David F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Modulating Electron Beam–Sample Interactions in Imaging and Diffraction Modes by Dose Fractionation with Low Dose Rates</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>Technological opportunities are explored to enhance detection schemes in transmission electron microscopy (TEM) that build on the detection of single-electron scattering events across the typical spectrum of interdisciplinary applications. They range from imaging with high spatiotemporal resolution to diffraction experiments at the window to quantum mechanics, where the wave-particle dualism of single electrons is evident. At the ultimate detection limit, where isolated electrons are delivered to interact with solids, we find that the beam current dominates damage processes instead of the deposited electron charge, which can be exploited to modify electron beam-induced sample alterations. The results are explained by assuming that all electron scattering are inelastic and include phonon excitation that can hardly be distinguished from elastic electron scattering. Consequently, a coherence length and a related coherence time exist that reflect the interaction of the electron with the sample and change linearly with energy loss. Phonon excitations are of small energy (<100 meV), but they occur frequently and scale with beam current in the irradiated area, which is why we can detect their contribution to beam-induced sample alterations and damage.</description><subject>beam–sample interactions</subject><subject>Coherence length</subject><subject>Coherent scattering</subject><subject>cryogenic electron microscopy (cryo-EM)</subject><subject>Crystals</subject><subject>Damage</subject><subject>Dosage</subject><subject>Elastic scattering</subject><subject>Electron beams</subject><subject>Energy dissipation</subject><subject>Energy loss</subject><subject>Excitation</subject><subject>Fractionation</subject><subject>high-resolution transmission electron microscopy (HRTEM)</subject><subject>inelastic electron scattering</subject><subject>Inelastic scattering</subject><subject>OTHER INSTRUMENTATION</subject><subject>Phonons</subject><subject>Quantum mechanics</subject><subject>Single electrons</subject><subject>Software and Instrumentation</subject><subject>temporal coherence</subject><subject>Transmission electron microscopy</subject><subject>Wave diffraction</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhSMEEqVwAHYWrAN2nNjOEvoDlYqQKEjsoonjtK4au9iuqu64AzfkJKQ_EgvEyuN533ua0UTRJcE3BBN-OyEpJXnCWdJ-Eybej6JO28piQUh2vKtJvNVPozPv5xhjijnrRJsnW60WELSZosFCyeCsQfcKmu_Prwk0y4VCIxOUAxm0NR5pg0YNTLc4mAr1dV0fNNQmKY_KDepbr9Dw0IadttZhhsZ2vddeICh_Hp3UsPDq4vB2o7fh4LX3GI-fH0a9u3EsqeAhBlZXdSp4qoSiVcYkTqGEkjJGVC5ZmgpKKOMSMpGnZV3mRFYlTxOQEmoGGe1GV_tc64MuvNRByZm0xrTLFkQwyoVooes9tHT2Y6V8KOZ25Uw7V5EwnGc54Yy0FNlT0lnvnaqLpdMNuE1BcLE9Q_HnDK2HHjzQlE5XU_Ub_b_rB_a0i6Y</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kisielowski, Christian</creator><creator>Specht, Petra</creator><creator>Rozeveld, Steven J.</creator><creator>Kang, Joo</creator><creator>Fielitz, Alyssa J.</creator><creator>Barton, David</creator><creator>Salazar, Anthony C.</creator><creator>Dubon, Oscar D.</creator><creator>Van Dyck, Dirk</creator><creator>Yancey, David F.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><general>Microscopy Society of America (MSA)</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20211201</creationdate><title>Modulating Electron Beam–Sample Interactions in Imaging and Diffraction Modes by Dose Fractionation with Low Dose Rates</title><author>Kisielowski, Christian ; Specht, Petra ; Rozeveld, Steven J. ; Kang, Joo ; Fielitz, Alyssa J. ; Barton, David ; Salazar, Anthony C. ; Dubon, Oscar D. ; Van Dyck, Dirk ; Yancey, David F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>beam–sample interactions</topic><topic>Coherence length</topic><topic>Coherent scattering</topic><topic>cryogenic electron microscopy (cryo-EM)</topic><topic>Crystals</topic><topic>Damage</topic><topic>Dosage</topic><topic>Elastic scattering</topic><topic>Electron beams</topic><topic>Energy dissipation</topic><topic>Energy loss</topic><topic>Excitation</topic><topic>Fractionation</topic><topic>high-resolution transmission electron microscopy (HRTEM)</topic><topic>inelastic electron scattering</topic><topic>Inelastic scattering</topic><topic>OTHER INSTRUMENTATION</topic><topic>Phonons</topic><topic>Quantum mechanics</topic><topic>Single electrons</topic><topic>Software and Instrumentation</topic><topic>temporal coherence</topic><topic>Transmission electron microscopy</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisielowski, Christian</creatorcontrib><creatorcontrib>Specht, Petra</creatorcontrib><creatorcontrib>Rozeveld, Steven J.</creatorcontrib><creatorcontrib>Kang, Joo</creatorcontrib><creatorcontrib>Fielitz, Alyssa J.</creatorcontrib><creatorcontrib>Barton, David</creatorcontrib><creatorcontrib>Salazar, Anthony C.</creatorcontrib><creatorcontrib>Dubon, Oscar D.</creatorcontrib><creatorcontrib>Van Dyck, Dirk</creatorcontrib><creatorcontrib>Yancey, David F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Cambridge University Press - Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisielowski, Christian</au><au>Specht, Petra</au><au>Rozeveld, Steven J.</au><au>Kang, Joo</au><au>Fielitz, Alyssa J.</au><au>Barton, David</au><au>Salazar, Anthony C.</au><au>Dubon, Oscar D.</au><au>Van Dyck, Dirk</au><au>Yancey, David F.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating Electron Beam–Sample Interactions in Imaging and Diffraction Modes by Dose Fractionation with Low Dose Rates</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>27</volume><issue>6</issue><spage>1420</spage><epage>1430</epage><pages>1420-1430</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>Technological opportunities are explored to enhance detection schemes in transmission electron microscopy (TEM) that build on the detection of single-electron scattering events across the typical spectrum of interdisciplinary applications. They range from imaging with high spatiotemporal resolution to diffraction experiments at the window to quantum mechanics, where the wave-particle dualism of single electrons is evident. At the ultimate detection limit, where isolated electrons are delivered to interact with solids, we find that the beam current dominates damage processes instead of the deposited electron charge, which can be exploited to modify electron beam-induced sample alterations. The results are explained by assuming that all electron scattering are inelastic and include phonon excitation that can hardly be distinguished from elastic electron scattering. Consequently, a coherence length and a related coherence time exist that reflect the interaction of the electron with the sample and change linearly with energy loss. Phonon excitations are of small energy (<100 meV), but they occur frequently and scale with beam current in the irradiated area, which is why we can detect their contribution to beam-induced sample alterations and damage.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S143192762101268X</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2021-12, Vol.27 (6), p.1420-1430 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_osti_scitechconnect_1863788 |
source | Cambridge University Press |
subjects | beam–sample interactions Coherence length Coherent scattering cryogenic electron microscopy (cryo-EM) Crystals Damage Dosage Elastic scattering Electron beams Energy dissipation Energy loss Excitation Fractionation high-resolution transmission electron microscopy (HRTEM) inelastic electron scattering Inelastic scattering OTHER INSTRUMENTATION Phonons Quantum mechanics Single electrons Software and Instrumentation temporal coherence Transmission electron microscopy Wave diffraction |
title | Modulating Electron Beam–Sample Interactions in Imaging and Diffraction Modes by Dose Fractionation with Low Dose Rates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20Electron%20Beam%E2%80%93Sample%20Interactions%20in%20Imaging%20and%20Diffraction%20Modes%20by%20Dose%20Fractionation%20with%20Low%20Dose%20Rates&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Kisielowski,%20Christian&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-12-01&rft.volume=27&rft.issue=6&rft.spage=1420&rft.epage=1430&rft.pages=1420-1430&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S143192762101268X&rft_dat=%3Cproquest_osti_%3E2609591761%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-a6fdf4874e8e3d56c04abab3661e9c644831367ca5894bfb91cdb742accaf6a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609591761&rft_id=info:pmid/&rft_cupid=10_1017_S143192762101268X&rfr_iscdi=true |