Loading…

Controlled Hysteresis of Conductance in Molecular Tunneling Junctions

The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2'-bipyridine; BIPY-MCl2). The hyster...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2022-03, Vol.16 (3)
Main Authors: Park, Junwoo, Kodaimati, Mohamad S., Belding, Lee, Root, Samuel E., Schatz, George C., Whitesides, George M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title ACS nano
container_volume 16
creator Park, Junwoo
Kodaimati, Mohamad S.
Belding, Lee
Root, Samuel E.
Schatz, George C.
Whitesides, George M.
description The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2'-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn(II), Fe(II), Co(II), or Ni(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and –1.0 V. When the metal ion is Cr(II) or Cu(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. Furthermore, this voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1865231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865231</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18652313</originalsourceid><addsrcrecordid>eNqNi7sKwkAQRRdRMD7-YbAPZA3ZxDpEgmCXwk7CZKIryyxkdgv_3hRibXUPnHMXKtGn3KRZZW7LHxd6rTYirywryqo0iWpqz2HyztEA7VsCTSRWwI8wiyFi6BkJLMPVO8Lo-gm6yEzO8gMukTFYz7JTq7F3QvvvbtXh3HR1m3oJ9i5oA-ET_fzDcNeVKY65zv-KPm7KPN4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Park, Junwoo ; Kodaimati, Mohamad S. ; Belding, Lee ; Root, Samuel E. ; Schatz, George C. ; Whitesides, George M.</creator><creatorcontrib>Park, Junwoo ; Kodaimati, Mohamad S. ; Belding, Lee ; Root, Samuel E. ; Schatz, George C. ; Whitesides, George M. ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2'-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn(II), Fe(II), Co(II), or Ni(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and –1.0 V. When the metal ion is Cr(II) or Cu(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. Furthermore, this voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>charge transport ; charge transport, hysteresis in conductance, quantum tunneling, molecular tunneling junctions, self-assembled monolayers (SAMs), EGaIn junction, molecular electronics ; EGaIn junction ; electrical conductivity ; electrodes ; gold ; hysteresis ; hysteresis in conductance ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; molecular electronics ; molecular tunneling junctions ; quantum tunneling ; self-assembled monolayers (SAMs) ; tunneling</subject><ispartof>ACS nano, 2022-03, Vol.16 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000194512442 ; 0000000158374740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1865231$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Junwoo</creatorcontrib><creatorcontrib>Kodaimati, Mohamad S.</creatorcontrib><creatorcontrib>Belding, Lee</creatorcontrib><creatorcontrib>Root, Samuel E.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</title><title>ACS nano</title><description>The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2'-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn(II), Fe(II), Co(II), or Ni(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and –1.0 V. When the metal ion is Cr(II) or Cu(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. Furthermore, this voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.</description><subject>charge transport</subject><subject>charge transport, hysteresis in conductance, quantum tunneling, molecular tunneling junctions, self-assembled monolayers (SAMs), EGaIn junction, molecular electronics</subject><subject>EGaIn junction</subject><subject>electrical conductivity</subject><subject>electrodes</subject><subject>gold</subject><subject>hysteresis</subject><subject>hysteresis in conductance</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>molecular electronics</subject><subject>molecular tunneling junctions</subject><subject>quantum tunneling</subject><subject>self-assembled monolayers (SAMs)</subject><subject>tunneling</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNi7sKwkAQRRdRMD7-YbAPZA3ZxDpEgmCXwk7CZKIryyxkdgv_3hRibXUPnHMXKtGn3KRZZW7LHxd6rTYirywryqo0iWpqz2HyztEA7VsCTSRWwI8wiyFi6BkJLMPVO8Lo-gm6yEzO8gMukTFYz7JTq7F3QvvvbtXh3HR1m3oJ9i5oA-ET_fzDcNeVKY65zv-KPm7KPN4</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Park, Junwoo</creator><creator>Kodaimati, Mohamad S.</creator><creator>Belding, Lee</creator><creator>Root, Samuel E.</creator><creator>Schatz, George C.</creator><creator>Whitesides, George M.</creator><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000194512442</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid></search><sort><creationdate>20220301</creationdate><title>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</title><author>Park, Junwoo ; Kodaimati, Mohamad S. ; Belding, Lee ; Root, Samuel E. ; Schatz, George C. ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18652313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>charge transport</topic><topic>charge transport, hysteresis in conductance, quantum tunneling, molecular tunneling junctions, self-assembled monolayers (SAMs), EGaIn junction, molecular electronics</topic><topic>EGaIn junction</topic><topic>electrical conductivity</topic><topic>electrodes</topic><topic>gold</topic><topic>hysteresis</topic><topic>hysteresis in conductance</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>molecular electronics</topic><topic>molecular tunneling junctions</topic><topic>quantum tunneling</topic><topic>self-assembled monolayers (SAMs)</topic><topic>tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Junwoo</creatorcontrib><creatorcontrib>Kodaimati, Mohamad S.</creatorcontrib><creatorcontrib>Belding, Lee</creatorcontrib><creatorcontrib>Root, Samuel E.</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Junwoo</au><au>Kodaimati, Mohamad S.</au><au>Belding, Lee</au><au>Root, Samuel E.</au><au>Schatz, George C.</au><au>Whitesides, George M.</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Hysteresis of Conductance in Molecular Tunneling Junctions</atitle><jtitle>ACS nano</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The problem this paper addresses is the origin of the hysteretic behavior in two-terminal molecular junctions made from an EGaIn electrode and self-assembled monolayers of alkanethiolates terminated in chelates (transition metal dichlorides complexed with 2,2'-bipyridine; BIPY-MCl2). The hysteresis of conductance displayed by these BIPY-MCl2 junctions changes in magnitude depending on the identity of the metal ion (M) and the window of the applied voltage across the junction. The hysteretic behavior of conductance in these junctions appears only in an incoherent (Fowler–Nordheim) tunneling regime. When the complexed metal ion is Mn(II), Fe(II), Co(II), or Ni(II), both incoherent tunneling and hysteresis are observed for a voltage range between +1.0 V and –1.0 V. When the metal ion is Cr(II) or Cu(II), however, only resonant (one-step) tunneling is observed, and the junctions exhibit no hysteresis and do not enter the incoherent tunneling regime. Using this correlation, the conductance characteristics of BIPY-MCl2 junctions can be controlled. Furthermore, this voltage-induced change of conductance demonstrates a simple, fast, and reversible way (i.e., by changing the applied voltage) to modulate conductance in molecular tunneling junctions.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><orcidid>https://orcid.org/0000000194512442</orcidid><orcidid>https://orcid.org/0000000158374740</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-03, Vol.16 (3)
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1865231
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects charge transport
charge transport, hysteresis in conductance, quantum tunneling, molecular tunneling junctions, self-assembled monolayers (SAMs), EGaIn junction, molecular electronics
EGaIn junction
electrical conductivity
electrodes
gold
hysteresis
hysteresis in conductance
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
molecular electronics
molecular tunneling junctions
quantum tunneling
self-assembled monolayers (SAMs)
tunneling
title Controlled Hysteresis of Conductance in Molecular Tunneling Junctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Hysteresis%20of%20Conductance%20in%20Molecular%20Tunneling%20Junctions&rft.jtitle=ACS%20nano&rft.au=Park,%20Junwoo&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2022-03-01&rft.volume=16&rft.issue=3&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/&rft_dat=%3Costi%3E1865231%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18652313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true