Loading…

Three Decades of Divergent Land Use and Plant Community Change Alters Soil C and N Content in Tallgrass Prairie

Frequent fire and grazing by megafauna are important determinants of tallgrass prairie plant community structure. However, fire suppression and removal of native grazers have altered these natural disturbance regimes and changed grassland plant communities with potential long‐term consequences for s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Biogeosciences 2020-08, Vol.125 (8), p.n/a
Main Authors: Connell, R. Kent, Nippert, Jesse B., Blair, John M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Frequent fire and grazing by megafauna are important determinants of tallgrass prairie plant community structure. However, fire suppression and removal of native grazers have altered these natural disturbance regimes and changed grassland plant communities with potential long‐term consequences for soil carbon (C) and nitrogen (N) storage. We investigated multidecade changes in soil C and N pools in response to contrasting long‐term burning and grazing treatments. Fire suppression with or without grazers and exclusion of grazers in annually burned prairie increased soil C content and shifted the δ13C signature of soil C over time, concomitant with changes in plant community composition. Soil δ13C values indicated that increased soil C content was associated with an increased contribution from plants using a C3 photosynthetic pathway (i.e., woody shrubs) under fire suppression. Soil N content also increased when fire was suppressed, relative to frequently burned grassland, but the rate of increase was slower when grazers were present. Additionally, changes in δ15N values suggested that grazing increased the openness of the N cycle, presumably due to greater N losses. By coupling long‐term fire and grazing treatments with plant community data and soil samples archived over three decades, we demonstrate that human‐caused changes to natural disturbance regimes in a tallgrass prairie significantly alter soil C and N cycles through belowground changes associated with shifts in the plant community. Since natural disturbance regimes have been altered in grasslands across the world, our results are relevant for understanding the long‐term biogeochemical consequences of these ongoing land use changes. Plain Language Summary The tallgrass prairie of the central United States was historically maintained by frequent fire and bison grazing. However, human‐caused fire suppression and bison removal has altered the plant community composition with cascading effects on elemental cycling. By analyzing soil collected over a 30‐year period, we investigated the long‐term effects of contrasting fire and grazing regimes on soil carbon and nitrogen. Soil carbon content increased over time if fire was suppressed and/or bison were absent. Soil nitrogen content increased only if fire was suppressed. Plant community data and soil isotopic evidence indicated that soil carbon was highest when woody plants were contributing more carbon to the soil in the fire suppression treatments. On th
ISSN:2169-8953
2169-8961
DOI:10.1029/2020JG005723