Loading…

Probing neutrino-portal dark matter at the Forward Physics Facility

The Forward Physics Facility (FPF), planned to operate near the ATLAS interaction point at the LHC, offers exciting new terrain to explore neutrino properties at TeV energy scales. It will reach an unprecedented regime for terrestrial neutrino experiments and provide the opportunity to reveal new ph...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2022-04, Vol.105 (7), Article 075026
Main Authors: Kelly, Kevin J., Kling, Felix, Tuckler, Douglas, Zhang, Yue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Forward Physics Facility (FPF), planned to operate near the ATLAS interaction point at the LHC, offers exciting new terrain to explore neutrino properties at TeV energy scales. It will reach an unprecedented regime for terrestrial neutrino experiments and provide the opportunity to reveal new physics of neutrinos at higher energy scales. We demonstrate that future detectors at the FPF have the potential to discover new mediators that couple predominantly to neutrinos, with masses between 0.3 GeV and 20 GeV and small couplings not yet probed by existing searches. Such a neutrinophilic mediator is well motivated for addressing the origin of several neutrino-portal dark matter candidates, including thermal freeze-out and sterile-neutrino dark matter scenarios. Experimentally, the corresponding signatures include neutrino charged-current scattering events associated with large missing transverse momentum, and excessive apparent tau-neutrino events. We discuss the FPF detector capabilities needed for this search, most importantly the hadronic energy resolution.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.105.075026