Loading…
Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors
In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generaliz...
Saved in:
Published in: | Renewable energy 2022-01, Vol.182 (C), p.615-626 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23 |
container_end_page | 626 |
container_issue | C |
container_start_page | 615 |
container_title | Renewable energy |
container_volume | 182 |
creator | Xu, Zifei Mei, Xuan Wang, Xinyu Yue, Minnan Jin, Jiangtao Yang, Yang Li, Chun |
description | In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level.
•A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed. |
doi_str_mv | 10.1016/j.renene.2021.10.024 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1868739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148121014816</els_id><sourcerecordid>S0960148121014816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaGBbNP8gxxE795KsteWL4WyNG0hkEt6FpI83tXGlspI3mV_Vv9h5HhzDQINDO-DN4-Qe87WnPH622GN4PNbCyZ4Xq2ZqK7IisumLVgtxSeyYm3NCl5JfkM-x3hgjG9kU63I_wc9DYl2Tu98iC7S0NOT8x1NExrngRrQ6PyOTnH-NR0z3BXR6gGoDf4Yhim54PVAPUz4NtIp4EtWSXtqXOcQ7AUxhCwR9wETTYAjHWEMeKY6253A7fYJOjrqQ0CXzvQY0uzYB3z3BB8Dxi_kutdDhLvLvCV_H34-b38Xj0-__mx_PBa2bNpUCKMrK2rTd6Y0toWKN21tW1Fv2l6YBmwnG6E5k1KXxthabuxGWluVgvGZWd6Sr4tuiMmpaF0Cu8-JfY6juKxlU7YZVC0giyFGhF79QzdqPCvO1NyNOqilGzV3M29zN5n2faFBDnB0gLM-eAvLtVQX3McCr8dvn9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</title><source>Elsevier</source><creator>Xu, Zifei ; Mei, Xuan ; Wang, Xinyu ; Yue, Minnan ; Jin, Jiangtao ; Yang, Yang ; Li, Chun</creator><creatorcontrib>Xu, Zifei ; Mei, Xuan ; Wang, Xinyu ; Yue, Minnan ; Jin, Jiangtao ; Yang, Yang ; Li, Chun</creatorcontrib><description>In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level.
•A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2021.10.024</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Bearing ; Convolutional neural network ; Fault diagnosis ; Information fusion ; Wind turbine</subject><ispartof>Renewable energy, 2022-01, Vol.182 (C), p.615-626</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</citedby><cites>FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</cites><orcidid>0000-0002-6251-0837 ; 0000000262510837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1868739$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zifei</creatorcontrib><creatorcontrib>Mei, Xuan</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Yue, Minnan</creatorcontrib><creatorcontrib>Jin, Jiangtao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><title>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</title><title>Renewable energy</title><description>In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level.
•A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.</description><subject>Bearing</subject><subject>Convolutional neural network</subject><subject>Fault diagnosis</subject><subject>Information fusion</subject><subject>Wind turbine</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFaGBbNP8gxxE795KsteWL4WyNG0hkEt6FpI83tXGlspI3mV_Vv9h5HhzDQINDO-DN4-Qe87WnPH622GN4PNbCyZ4Xq2ZqK7IisumLVgtxSeyYm3NCl5JfkM-x3hgjG9kU63I_wc9DYl2Tu98iC7S0NOT8x1NExrngRrQ6PyOTnH-NR0z3BXR6gGoDf4Yhim54PVAPUz4NtIp4EtWSXtqXOcQ7AUxhCwR9wETTYAjHWEMeKY6253A7fYJOjrqQ0CXzvQY0uzYB3z3BB8Dxi_kutdDhLvLvCV_H34-b38Xj0-__mx_PBa2bNpUCKMrK2rTd6Y0toWKN21tW1Fv2l6YBmwnG6E5k1KXxthabuxGWluVgvGZWd6Sr4tuiMmpaF0Cu8-JfY6juKxlU7YZVC0giyFGhF79QzdqPCvO1NyNOqilGzV3M29zN5n2faFBDnB0gLM-eAvLtVQX3McCr8dvn9k</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Xu, Zifei</creator><creator>Mei, Xuan</creator><creator>Wang, Xinyu</creator><creator>Yue, Minnan</creator><creator>Jin, Jiangtao</creator><creator>Yang, Yang</creator><creator>Li, Chun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6251-0837</orcidid><orcidid>https://orcid.org/0000000262510837</orcidid></search><sort><creationdate>202201</creationdate><title>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</title><author>Xu, Zifei ; Mei, Xuan ; Wang, Xinyu ; Yue, Minnan ; Jin, Jiangtao ; Yang, Yang ; Li, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bearing</topic><topic>Convolutional neural network</topic><topic>Fault diagnosis</topic><topic>Information fusion</topic><topic>Wind turbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zifei</creatorcontrib><creatorcontrib>Mei, Xuan</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Yue, Minnan</creatorcontrib><creatorcontrib>Jin, Jiangtao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zifei</au><au>Mei, Xuan</au><au>Wang, Xinyu</au><au>Yue, Minnan</au><au>Jin, Jiangtao</au><au>Yang, Yang</au><au>Li, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</atitle><jtitle>Renewable energy</jtitle><date>2022-01</date><risdate>2022</risdate><volume>182</volume><issue>C</issue><spage>615</spage><epage>626</epage><pages>615-626</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level.
•A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2021.10.024</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6251-0837</orcidid><orcidid>https://orcid.org/0000000262510837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2022-01, Vol.182 (C), p.615-626 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_osti_scitechconnect_1868739 |
source | Elsevier |
subjects | Bearing Convolutional neural network Fault diagnosis Information fusion Wind turbine |
title | Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20of%20wind%20turbine%20bearing%20using%20a%20multi-scale%20convolutional%20neural%20network%20with%20bidirectional%20long%20short%20term%20memory%20and%20weighted%20majority%20voting%20for%20multi-sensors&rft.jtitle=Renewable%20energy&rft.au=Xu,%20Zifei&rft.date=2022-01&rft.volume=182&rft.issue=C&rft.spage=615&rft.epage=626&rft.pages=615-626&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2021.10.024&rft_dat=%3Celsevier_osti_%3ES0960148121014816%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |