Loading…

Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors

In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generaliz...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2022-01, Vol.182 (C), p.615-626
Main Authors: Xu, Zifei, Mei, Xuan, Wang, Xinyu, Yue, Minnan, Jin, Jiangtao, Yang, Yang, Li, Chun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23
cites cdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23
container_end_page 626
container_issue C
container_start_page 615
container_title Renewable energy
container_volume 182
creator Xu, Zifei
Mei, Xuan
Wang, Xinyu
Yue, Minnan
Jin, Jiangtao
Yang, Yang
Li, Chun
description In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level. •A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.
doi_str_mv 10.1016/j.renene.2021.10.024
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1868739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148121014816</els_id><sourcerecordid>S0960148121014816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaGBbNP8gxxE795KsteWL4WyNG0hkEt6FpI83tXGlspI3mV_Vv9h5HhzDQINDO-DN4-Qe87WnPH622GN4PNbCyZ4Xq2ZqK7IisumLVgtxSeyYm3NCl5JfkM-x3hgjG9kU63I_wc9DYl2Tu98iC7S0NOT8x1NExrngRrQ6PyOTnH-NR0z3BXR6gGoDf4Yhim54PVAPUz4NtIp4EtWSXtqXOcQ7AUxhCwR9wETTYAjHWEMeKY6253A7fYJOjrqQ0CXzvQY0uzYB3z3BB8Dxi_kutdDhLvLvCV_H34-b38Xj0-__mx_PBa2bNpUCKMrK2rTd6Y0toWKN21tW1Fv2l6YBmwnG6E5k1KXxthabuxGWluVgvGZWd6Sr4tuiMmpaF0Cu8-JfY6juKxlU7YZVC0giyFGhF79QzdqPCvO1NyNOqilGzV3M29zN5n2faFBDnB0gLM-eAvLtVQX3McCr8dvn9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</title><source>Elsevier</source><creator>Xu, Zifei ; Mei, Xuan ; Wang, Xinyu ; Yue, Minnan ; Jin, Jiangtao ; Yang, Yang ; Li, Chun</creator><creatorcontrib>Xu, Zifei ; Mei, Xuan ; Wang, Xinyu ; Yue, Minnan ; Jin, Jiangtao ; Yang, Yang ; Li, Chun</creatorcontrib><description>In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level. •A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2021.10.024</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Bearing ; Convolutional neural network ; Fault diagnosis ; Information fusion ; Wind turbine</subject><ispartof>Renewable energy, 2022-01, Vol.182 (C), p.615-626</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</citedby><cites>FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</cites><orcidid>0000-0002-6251-0837 ; 0000000262510837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1868739$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zifei</creatorcontrib><creatorcontrib>Mei, Xuan</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Yue, Minnan</creatorcontrib><creatorcontrib>Jin, Jiangtao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><title>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</title><title>Renewable energy</title><description>In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level. •A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.</description><subject>Bearing</subject><subject>Convolutional neural network</subject><subject>Fault diagnosis</subject><subject>Information fusion</subject><subject>Wind turbine</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFaGBbNP8gxxE795KsteWL4WyNG0hkEt6FpI83tXGlspI3mV_Vv9h5HhzDQINDO-DN4-Qe87WnPH622GN4PNbCyZ4Xq2ZqK7IisumLVgtxSeyYm3NCl5JfkM-x3hgjG9kU63I_wc9DYl2Tu98iC7S0NOT8x1NExrngRrQ6PyOTnH-NR0z3BXR6gGoDf4Yhim54PVAPUz4NtIp4EtWSXtqXOcQ7AUxhCwR9wETTYAjHWEMeKY6253A7fYJOjrqQ0CXzvQY0uzYB3z3BB8Dxi_kutdDhLvLvCV_H34-b38Xj0-__mx_PBa2bNpUCKMrK2rTd6Y0toWKN21tW1Fv2l6YBmwnG6E5k1KXxthabuxGWluVgvGZWd6Sr4tuiMmpaF0Cu8-JfY6juKxlU7YZVC0giyFGhF79QzdqPCvO1NyNOqilGzV3M29zN5n2faFBDnB0gLM-eAvLtVQX3McCr8dvn9k</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Xu, Zifei</creator><creator>Mei, Xuan</creator><creator>Wang, Xinyu</creator><creator>Yue, Minnan</creator><creator>Jin, Jiangtao</creator><creator>Yang, Yang</creator><creator>Li, Chun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6251-0837</orcidid><orcidid>https://orcid.org/0000000262510837</orcidid></search><sort><creationdate>202201</creationdate><title>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</title><author>Xu, Zifei ; Mei, Xuan ; Wang, Xinyu ; Yue, Minnan ; Jin, Jiangtao ; Yang, Yang ; Li, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bearing</topic><topic>Convolutional neural network</topic><topic>Fault diagnosis</topic><topic>Information fusion</topic><topic>Wind turbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zifei</creatorcontrib><creatorcontrib>Mei, Xuan</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Yue, Minnan</creatorcontrib><creatorcontrib>Jin, Jiangtao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zifei</au><au>Mei, Xuan</au><au>Wang, Xinyu</au><au>Yue, Minnan</au><au>Jin, Jiangtao</au><au>Yang, Yang</au><au>Li, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors</atitle><jtitle>Renewable energy</jtitle><date>2022-01</date><risdate>2022</risdate><volume>182</volume><issue>C</issue><spage>615</spage><epage>626</epage><pages>615-626</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level. •A MSCNN-BiLSTM model is developed.•A weighted majority voting rule is proposed.•An end-to-end multisensory diagnosis framework is designed.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2021.10.024</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6251-0837</orcidid><orcidid>https://orcid.org/0000000262510837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2022-01, Vol.182 (C), p.615-626
issn 0960-1481
1879-0682
language eng
recordid cdi_osti_scitechconnect_1868739
source Elsevier
subjects Bearing
Convolutional neural network
Fault diagnosis
Information fusion
Wind turbine
title Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20of%20wind%20turbine%20bearing%20using%20a%20multi-scale%20convolutional%20neural%20network%20with%20bidirectional%20long%20short%20term%20memory%20and%20weighted%20majority%20voting%20for%20multi-sensors&rft.jtitle=Renewable%20energy&rft.au=Xu,%20Zifei&rft.date=2022-01&rft.volume=182&rft.issue=C&rft.spage=615&rft.epage=626&rft.pages=615-626&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2021.10.024&rft_dat=%3Celsevier_osti_%3ES0960148121014816%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-2ba4c26bfdb3bc9e41796c92659f2b7ecd872a1088a3bbc685c58cc43201a4c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true