Loading…

Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D

We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITE...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2015-01, Vol.55 (2)
Main Authors: Wade, M. R., Nazikian, R., deGrassie, J. S., Evans, T. E., Ferraro, N. M., Moyer, R. A., Orlov, D. M., Buttery, R. J., Fenstermacher, M. E., Garofalo, A. M., Lanctot, M. A., McKee, G. R., Osborne, T. H., Shafer, M. W., Solomon, W. M., Snyder, P. B., Suttrop, W., Wingen, A., Unterberg, E. A., Zeng, L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.
ISSN:0029-5515
1741-4326