Loading…

Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D

We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITE...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2015-01, Vol.55 (2)
Main Authors: Wade, M. R., Nazikian, R., deGrassie, J. S., Evans, T. E., Ferraro, N. M., Moyer, R. A., Orlov, D. M., Buttery, R. J., Fenstermacher, M. E., Garofalo, A. M., Lanctot, M. A., McKee, G. R., Osborne, T. H., Shafer, M. W., Solomon, W. M., Snyder, P. B., Suttrop, W., Wingen, A., Unterberg, E. A., Zeng, L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page
container_title Nuclear fusion
container_volume 55
creator Wade, M. R.
Nazikian, R.
deGrassie, J. S.
Evans, T. E.
Ferraro, N. M.
Moyer, R. A.
Orlov, D. M.
Buttery, R. J.
Fenstermacher, M. E.
Garofalo, A. M.
Lanctot, M. A.
McKee, G. R.
Osborne, T. H.
Shafer, M. W.
Solomon, W. M.
Snyder, P. B.
Suttrop, W.
Wingen, A.
Unterberg, E. A.
Zeng, L.
description We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1871390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1871390</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18713903</originalsourceid><addsrcrecordid>eNqNjMuKwkAQRRsZwYz6D8XsA9124mMpo2Jg3LmXtlNJWrQ6pCqCf68z-AGzuhzO4Q5UYhaZSTM7m3-oROvZKs1zk4_UJ_NFa5MZaxPVrMu7I48MgUAahLZ5cPAMPZXYsTgqA9UQK9j-HID7tu2QOUSCnn_FiyI5Eri5mlCChxY76buzk1f097opiiLdTNSwclfG6XvH6mu3PX7v08gSTuyDoG98JEIvJ7NcGLvS9l_REwVPSRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Wade, M. R. ; Nazikian, R. ; deGrassie, J. S. ; Evans, T. E. ; Ferraro, N. M. ; Moyer, R. A. ; Orlov, D. M. ; Buttery, R. J. ; Fenstermacher, M. E. ; Garofalo, A. M. ; Lanctot, M. A. ; McKee, G. R. ; Osborne, T. H. ; Shafer, M. W. ; Solomon, W. M. ; Snyder, P. B. ; Suttrop, W. ; Wingen, A. ; Unterberg, E. A. ; Zeng, L.</creator><creatorcontrib>Wade, M. R. ; Nazikian, R. ; deGrassie, J. S. ; Evans, T. E. ; Ferraro, N. M. ; Moyer, R. A. ; Orlov, D. M. ; Buttery, R. J. ; Fenstermacher, M. E. ; Garofalo, A. M. ; Lanctot, M. A. ; McKee, G. R. ; Osborne, T. H. ; Shafer, M. W. ; Solomon, W. M. ; Snyder, P. B. ; Suttrop, W. ; Wingen, A. ; Unterberg, E. A. ; Zeng, L. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; General Atomics, San Diego, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><language>eng</language><publisher>United States: IOP Science</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; DIII-D ; ELM control ; MHD plasma response ; non-axisymmetric fields ; resonant magnetic perturbation</subject><ispartof>Nuclear fusion, 2015-01, Vol.55 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871390$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wade, M. R.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>deGrassie, J. S.</creatorcontrib><creatorcontrib>Evans, T. E.</creatorcontrib><creatorcontrib>Ferraro, N. M.</creatorcontrib><creatorcontrib>Moyer, R. A.</creatorcontrib><creatorcontrib>Orlov, D. M.</creatorcontrib><creatorcontrib>Buttery, R. J.</creatorcontrib><creatorcontrib>Fenstermacher, M. E.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Lanctot, M. A.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Osborne, T. H.</creatorcontrib><creatorcontrib>Shafer, M. W.</creatorcontrib><creatorcontrib>Solomon, W. M.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Suttrop, W.</creatorcontrib><creatorcontrib>Wingen, A.</creatorcontrib><creatorcontrib>Unterberg, E. A.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</title><title>Nuclear fusion</title><description>We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>DIII-D</subject><subject>ELM control</subject><subject>MHD plasma response</subject><subject>non-axisymmetric fields</subject><subject>resonant magnetic perturbation</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjMuKwkAQRRsZwYz6D8XsA9124mMpo2Jg3LmXtlNJWrQ6pCqCf68z-AGzuhzO4Q5UYhaZSTM7m3-oROvZKs1zk4_UJ_NFa5MZaxPVrMu7I48MgUAahLZ5cPAMPZXYsTgqA9UQK9j-HID7tu2QOUSCnn_FiyI5Eri5mlCChxY76buzk1f097opiiLdTNSwclfG6XvH6mu3PX7v08gSTuyDoG98JEIvJ7NcGLvS9l_REwVPSRM</recordid><startdate>20150114</startdate><enddate>20150114</enddate><creator>Wade, M. R.</creator><creator>Nazikian, R.</creator><creator>deGrassie, J. S.</creator><creator>Evans, T. E.</creator><creator>Ferraro, N. M.</creator><creator>Moyer, R. A.</creator><creator>Orlov, D. M.</creator><creator>Buttery, R. J.</creator><creator>Fenstermacher, M. E.</creator><creator>Garofalo, A. M.</creator><creator>Lanctot, M. A.</creator><creator>McKee, G. R.</creator><creator>Osborne, T. H.</creator><creator>Shafer, M. W.</creator><creator>Solomon, W. M.</creator><creator>Snyder, P. B.</creator><creator>Suttrop, W.</creator><creator>Wingen, A.</creator><creator>Unterberg, E. A.</creator><creator>Zeng, L.</creator><general>IOP Science</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150114</creationdate><title>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</title><author>Wade, M. R. ; Nazikian, R. ; deGrassie, J. S. ; Evans, T. E. ; Ferraro, N. M. ; Moyer, R. A. ; Orlov, D. M. ; Buttery, R. J. ; Fenstermacher, M. E. ; Garofalo, A. M. ; Lanctot, M. A. ; McKee, G. R. ; Osborne, T. H. ; Shafer, M. W. ; Solomon, W. M. ; Snyder, P. B. ; Suttrop, W. ; Wingen, A. ; Unterberg, E. A. ; Zeng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18713903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>DIII-D</topic><topic>ELM control</topic><topic>MHD plasma response</topic><topic>non-axisymmetric fields</topic><topic>resonant magnetic perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wade, M. R.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>deGrassie, J. S.</creatorcontrib><creatorcontrib>Evans, T. E.</creatorcontrib><creatorcontrib>Ferraro, N. M.</creatorcontrib><creatorcontrib>Moyer, R. A.</creatorcontrib><creatorcontrib>Orlov, D. M.</creatorcontrib><creatorcontrib>Buttery, R. J.</creatorcontrib><creatorcontrib>Fenstermacher, M. E.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Lanctot, M. A.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Osborne, T. H.</creatorcontrib><creatorcontrib>Shafer, M. W.</creatorcontrib><creatorcontrib>Solomon, W. M.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Suttrop, W.</creatorcontrib><creatorcontrib>Wingen, A.</creatorcontrib><creatorcontrib>Unterberg, E. A.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wade, M. R.</au><au>Nazikian, R.</au><au>deGrassie, J. S.</au><au>Evans, T. E.</au><au>Ferraro, N. M.</au><au>Moyer, R. A.</au><au>Orlov, D. M.</au><au>Buttery, R. J.</au><au>Fenstermacher, M. E.</au><au>Garofalo, A. M.</au><au>Lanctot, M. A.</au><au>McKee, G. R.</au><au>Osborne, T. H.</au><au>Shafer, M. W.</au><au>Solomon, W. M.</au><au>Snyder, P. B.</au><au>Suttrop, W.</au><au>Wingen, A.</au><au>Unterberg, E. A.</au><au>Zeng, L.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</atitle><jtitle>Nuclear fusion</jtitle><date>2015-01-14</date><risdate>2015</risdate><volume>55</volume><issue>2</issue><issn>0029-5515</issn><eissn>1741-4326</eissn><abstract>We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.</abstract><cop>United States</cop><pub>IOP Science</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2015-01, Vol.55 (2)
issn 0029-5515
1741-4326
language eng
recordid cdi_osti_scitechconnect_1871390
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
DIII-D
ELM control
MHD plasma response
non-axisymmetric fields
resonant magnetic perturbation
title Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20the%20physics%20understanding%20of%20ELM%20suppression%20using%20resonant%20magnetic%20perturbations%20in%20DIII-D&rft.jtitle=Nuclear%20fusion&rft.au=Wade,%20M.%20R.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-01-14&rft.volume=55&rft.issue=2&rft.issn=0029-5515&rft.eissn=1741-4326&rft_id=info:doi/&rft_dat=%3Costi%3E1871390%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18713903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true