Loading…
Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D
We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITE...
Saved in:
Published in: | Nuclear fusion 2015-01, Vol.55 (2) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Nuclear fusion |
container_volume | 55 |
creator | Wade, M. R. Nazikian, R. deGrassie, J. S. Evans, T. E. Ferraro, N. M. Moyer, R. A. Orlov, D. M. Buttery, R. J. Fenstermacher, M. E. Garofalo, A. M. Lanctot, M. A. McKee, G. R. Osborne, T. H. Shafer, M. W. Solomon, W. M. Snyder, P. B. Suttrop, W. Wingen, A. Unterberg, E. A. Zeng, L. |
description | We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1871390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1871390</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18713903</originalsourceid><addsrcrecordid>eNqNjMuKwkAQRRsZwYz6D8XsA9124mMpo2Jg3LmXtlNJWrQ6pCqCf68z-AGzuhzO4Q5UYhaZSTM7m3-oROvZKs1zk4_UJ_NFa5MZaxPVrMu7I48MgUAahLZ5cPAMPZXYsTgqA9UQK9j-HID7tu2QOUSCnn_FiyI5Eri5mlCChxY76buzk1f097opiiLdTNSwclfG6XvH6mu3PX7v08gSTuyDoG98JEIvJ7NcGLvS9l_REwVPSRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Wade, M. R. ; Nazikian, R. ; deGrassie, J. S. ; Evans, T. E. ; Ferraro, N. M. ; Moyer, R. A. ; Orlov, D. M. ; Buttery, R. J. ; Fenstermacher, M. E. ; Garofalo, A. M. ; Lanctot, M. A. ; McKee, G. R. ; Osborne, T. H. ; Shafer, M. W. ; Solomon, W. M. ; Snyder, P. B. ; Suttrop, W. ; Wingen, A. ; Unterberg, E. A. ; Zeng, L.</creator><creatorcontrib>Wade, M. R. ; Nazikian, R. ; deGrassie, J. S. ; Evans, T. E. ; Ferraro, N. M. ; Moyer, R. A. ; Orlov, D. M. ; Buttery, R. J. ; Fenstermacher, M. E. ; Garofalo, A. M. ; Lanctot, M. A. ; McKee, G. R. ; Osborne, T. H. ; Shafer, M. W. ; Solomon, W. M. ; Snyder, P. B. ; Suttrop, W. ; Wingen, A. ; Unterberg, E. A. ; Zeng, L. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; General Atomics, San Diego, CA (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><language>eng</language><publisher>United States: IOP Science</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; DIII-D ; ELM control ; MHD plasma response ; non-axisymmetric fields ; resonant magnetic perturbation</subject><ispartof>Nuclear fusion, 2015-01, Vol.55 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871390$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wade, M. R.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>deGrassie, J. S.</creatorcontrib><creatorcontrib>Evans, T. E.</creatorcontrib><creatorcontrib>Ferraro, N. M.</creatorcontrib><creatorcontrib>Moyer, R. A.</creatorcontrib><creatorcontrib>Orlov, D. M.</creatorcontrib><creatorcontrib>Buttery, R. J.</creatorcontrib><creatorcontrib>Fenstermacher, M. E.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Lanctot, M. A.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Osborne, T. H.</creatorcontrib><creatorcontrib>Shafer, M. W.</creatorcontrib><creatorcontrib>Solomon, W. M.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Suttrop, W.</creatorcontrib><creatorcontrib>Wingen, A.</creatorcontrib><creatorcontrib>Unterberg, E. A.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</title><title>Nuclear fusion</title><description>We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>DIII-D</subject><subject>ELM control</subject><subject>MHD plasma response</subject><subject>non-axisymmetric fields</subject><subject>resonant magnetic perturbation</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjMuKwkAQRRsZwYz6D8XsA9124mMpo2Jg3LmXtlNJWrQ6pCqCf68z-AGzuhzO4Q5UYhaZSTM7m3-oROvZKs1zk4_UJ_NFa5MZaxPVrMu7I48MgUAahLZ5cPAMPZXYsTgqA9UQK9j-HID7tu2QOUSCnn_FiyI5Eri5mlCChxY76buzk1f097opiiLdTNSwclfG6XvH6mu3PX7v08gSTuyDoG98JEIvJ7NcGLvS9l_REwVPSRM</recordid><startdate>20150114</startdate><enddate>20150114</enddate><creator>Wade, M. R.</creator><creator>Nazikian, R.</creator><creator>deGrassie, J. S.</creator><creator>Evans, T. E.</creator><creator>Ferraro, N. M.</creator><creator>Moyer, R. A.</creator><creator>Orlov, D. M.</creator><creator>Buttery, R. J.</creator><creator>Fenstermacher, M. E.</creator><creator>Garofalo, A. M.</creator><creator>Lanctot, M. A.</creator><creator>McKee, G. R.</creator><creator>Osborne, T. H.</creator><creator>Shafer, M. W.</creator><creator>Solomon, W. M.</creator><creator>Snyder, P. B.</creator><creator>Suttrop, W.</creator><creator>Wingen, A.</creator><creator>Unterberg, E. A.</creator><creator>Zeng, L.</creator><general>IOP Science</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150114</creationdate><title>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</title><author>Wade, M. R. ; Nazikian, R. ; deGrassie, J. S. ; Evans, T. E. ; Ferraro, N. M. ; Moyer, R. A. ; Orlov, D. M. ; Buttery, R. J. ; Fenstermacher, M. E. ; Garofalo, A. M. ; Lanctot, M. A. ; McKee, G. R. ; Osborne, T. H. ; Shafer, M. W. ; Solomon, W. M. ; Snyder, P. B. ; Suttrop, W. ; Wingen, A. ; Unterberg, E. A. ; Zeng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18713903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>DIII-D</topic><topic>ELM control</topic><topic>MHD plasma response</topic><topic>non-axisymmetric fields</topic><topic>resonant magnetic perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wade, M. R.</creatorcontrib><creatorcontrib>Nazikian, R.</creatorcontrib><creatorcontrib>deGrassie, J. S.</creatorcontrib><creatorcontrib>Evans, T. E.</creatorcontrib><creatorcontrib>Ferraro, N. M.</creatorcontrib><creatorcontrib>Moyer, R. A.</creatorcontrib><creatorcontrib>Orlov, D. M.</creatorcontrib><creatorcontrib>Buttery, R. J.</creatorcontrib><creatorcontrib>Fenstermacher, M. E.</creatorcontrib><creatorcontrib>Garofalo, A. M.</creatorcontrib><creatorcontrib>Lanctot, M. A.</creatorcontrib><creatorcontrib>McKee, G. R.</creatorcontrib><creatorcontrib>Osborne, T. H.</creatorcontrib><creatorcontrib>Shafer, M. W.</creatorcontrib><creatorcontrib>Solomon, W. M.</creatorcontrib><creatorcontrib>Snyder, P. B.</creatorcontrib><creatorcontrib>Suttrop, W.</creatorcontrib><creatorcontrib>Wingen, A.</creatorcontrib><creatorcontrib>Unterberg, E. A.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wade, M. R.</au><au>Nazikian, R.</au><au>deGrassie, J. S.</au><au>Evans, T. E.</au><au>Ferraro, N. M.</au><au>Moyer, R. A.</au><au>Orlov, D. M.</au><au>Buttery, R. J.</au><au>Fenstermacher, M. E.</au><au>Garofalo, A. M.</au><au>Lanctot, M. A.</au><au>McKee, G. R.</au><au>Osborne, T. H.</au><au>Shafer, M. W.</au><au>Solomon, W. M.</au><au>Snyder, P. B.</au><au>Suttrop, W.</au><au>Wingen, A.</au><au>Unterberg, E. A.</au><au>Zeng, L.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><aucorp>General Atomics, San Diego, CA (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D</atitle><jtitle>Nuclear fusion</jtitle><date>2015-01-14</date><risdate>2015</risdate><volume>55</volume><issue>2</issue><issn>0029-5515</issn><eissn>1741-4326</eissn><abstract>We report recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. Complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. In the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.</abstract><cop>United States</cop><pub>IOP Science</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2015-01, Vol.55 (2) |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_osti_scitechconnect_1871390 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY DIII-D ELM control MHD plasma response non-axisymmetric fields resonant magnetic perturbation |
title | Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20the%20physics%20understanding%20of%20ELM%20suppression%20using%20resonant%20magnetic%20perturbations%20in%20DIII-D&rft.jtitle=Nuclear%20fusion&rft.au=Wade,%20M.%20R.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-01-14&rft.volume=55&rft.issue=2&rft.issn=0029-5515&rft.eissn=1741-4326&rft_id=info:doi/&rft_dat=%3Costi%3E1871390%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18713903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |