Loading…
Redox-Active Polymers Designed for the Circular Economy of Energy Storage Devices
Electrochemical energy storage is a keystone to support the rapid transition to a low-carbon-emission future for grid storage and transportation. While research on electrochemical energy storage devices has mostly dealt with performance improvements (energy density and power density), little attenti...
Saved in:
Published in: | ACS energy letters 2021-10, Vol.6 (10), p.3450-3457 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrochemical energy storage is a keystone to support the rapid transition to a low-carbon-emission future for grid storage and transportation. While research on electrochemical energy storage devices has mostly dealt with performance improvements (energy density and power density), little attention has been paid to designing devices that can be recycled with low cost and low environmental impact. Thus, next-generation energy storage devices should also address the integration of recyclability into the device design. Here, we demonstrate recyclable energy storage devices based on solution-processable redox-active conjugated polymers. The high electronic and ionic charge transport in these polymers enables the operation of single-phase electrodes in aqueous electrolytes with C-rates >100 with good electrochemical stability when the cell is charged to 1.2 V. Finally, we demonstrate the recyclability of these devices, achieving >85% capacity retention in each recycling step. Our work provides a framework for developing recyclable devices for sustainable energy storage technologies. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.1c01625 |