Loading…
Tracking the location of a road-constrained radioactive source with a network of detectors
Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2022-09, Vol.1039, p.166992, Article 166992 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3 |
container_end_page | |
container_issue | |
container_start_page | 166992 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 1039 |
creator | Osthus, Dave Mendoza, Paul Lalor, Peter Casleton, Emily Archer, Dan Ghawaly, James Garishvili, Irakli Rowe, Andrew J. Stewart, Ian R. Willis, Michael |
description | Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged. |
doi_str_mv | 10.1016/j.nima.2022.166992 |
format | article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1873944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900222004284</els_id><sourcerecordid>S0168900222004284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9A66I-xmBeTAkbkzjK2nipm7ckDsXxtLWwQC28d_LpK5lczfnO5x8hFxzVnLG29tNObpPKAUTouRtq5Q4ITPeSVGoRranZJZDXaEYE-fkIsYNy0_JbkbeVwFw68YPmtaW7jxCcn6kfqBAgwdToB9jCuBGa2gA4zxgcntLo_8OaOnBpXWOjjYdfNhOnLHJYvIhXpKzAXbRXv3dOXl7fFgtnovl69PL4n5ZYCV5KlBKbAyiVP3QNhUI1g8AyvZNPTQIHRuwaxjUbSMQWwOd7KXoeF0pqIVlppqTm2Ovj8npiC7_v86zxzxDZweVquscEscQBh9jsIP-CtlY-NGc6Umh3uhJoZ4U6qPCDN0dIZvn750NU7sd0RoXpnLj3X_4L97Re58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tracking the location of a road-constrained radioactive source with a network of detectors</title><source>ScienceDirect Journals</source><creator>Osthus, Dave ; Mendoza, Paul ; Lalor, Peter ; Casleton, Emily ; Archer, Dan ; Ghawaly, James ; Garishvili, Irakli ; Rowe, Andrew J. ; Stewart, Ian R. ; Willis, Michael</creator><creatorcontrib>Osthus, Dave ; Mendoza, Paul ; Lalor, Peter ; Casleton, Emily ; Archer, Dan ; Ghawaly, James ; Garishvili, Irakli ; Rowe, Andrew J. ; Stewart, Ian R. ; Willis, Michael ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2022.166992</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Bayesian ; Constraints ; Dynamic modeling ; Inference ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Machine learning ; Uncertainty quantification</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2022-09, Vol.1039, p.166992, Article 166992</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</citedby><cites>FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</cites><orcidid>0000-0002-4681-091X ; 0000000329095704 ; 0000000333976109 ; 0000000188268500 ; 0000000333821174 ; 0000000196733310 ; 000000024681091X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1873944$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osthus, Dave</creatorcontrib><creatorcontrib>Mendoza, Paul</creatorcontrib><creatorcontrib>Lalor, Peter</creatorcontrib><creatorcontrib>Casleton, Emily</creatorcontrib><creatorcontrib>Archer, Dan</creatorcontrib><creatorcontrib>Ghawaly, James</creatorcontrib><creatorcontrib>Garishvili, Irakli</creatorcontrib><creatorcontrib>Rowe, Andrew J.</creatorcontrib><creatorcontrib>Stewart, Ian R.</creatorcontrib><creatorcontrib>Willis, Michael</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tracking the location of a road-constrained radioactive source with a network of detectors</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.</description><subject>Bayesian</subject><subject>Constraints</subject><subject>Dynamic modeling</subject><subject>Inference</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Machine learning</subject><subject>Uncertainty quantification</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRxFr9A66I-xmBeTAkbkzjK2nipm7ckDsXxtLWwQC28d_LpK5lczfnO5x8hFxzVnLG29tNObpPKAUTouRtq5Q4ITPeSVGoRranZJZDXaEYE-fkIsYNy0_JbkbeVwFw68YPmtaW7jxCcn6kfqBAgwdToB9jCuBGa2gA4zxgcntLo_8OaOnBpXWOjjYdfNhOnLHJYvIhXpKzAXbRXv3dOXl7fFgtnovl69PL4n5ZYCV5KlBKbAyiVP3QNhUI1g8AyvZNPTQIHRuwaxjUbSMQWwOd7KXoeF0pqIVlppqTm2Ovj8npiC7_v86zxzxDZweVquscEscQBh9jsIP-CtlY-NGc6Umh3uhJoZ4U6qPCDN0dIZvn750NU7sd0RoXpnLj3X_4L97Re58</recordid><startdate>20220911</startdate><enddate>20220911</enddate><creator>Osthus, Dave</creator><creator>Mendoza, Paul</creator><creator>Lalor, Peter</creator><creator>Casleton, Emily</creator><creator>Archer, Dan</creator><creator>Ghawaly, James</creator><creator>Garishvili, Irakli</creator><creator>Rowe, Andrew J.</creator><creator>Stewart, Ian R.</creator><creator>Willis, Michael</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4681-091X</orcidid><orcidid>https://orcid.org/0000000329095704</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000188268500</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000196733310</orcidid><orcidid>https://orcid.org/000000024681091X</orcidid></search><sort><creationdate>20220911</creationdate><title>Tracking the location of a road-constrained radioactive source with a network of detectors</title><author>Osthus, Dave ; Mendoza, Paul ; Lalor, Peter ; Casleton, Emily ; Archer, Dan ; Ghawaly, James ; Garishvili, Irakli ; Rowe, Andrew J. ; Stewart, Ian R. ; Willis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian</topic><topic>Constraints</topic><topic>Dynamic modeling</topic><topic>Inference</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Machine learning</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osthus, Dave</creatorcontrib><creatorcontrib>Mendoza, Paul</creatorcontrib><creatorcontrib>Lalor, Peter</creatorcontrib><creatorcontrib>Casleton, Emily</creatorcontrib><creatorcontrib>Archer, Dan</creatorcontrib><creatorcontrib>Ghawaly, James</creatorcontrib><creatorcontrib>Garishvili, Irakli</creatorcontrib><creatorcontrib>Rowe, Andrew J.</creatorcontrib><creatorcontrib>Stewart, Ian R.</creatorcontrib><creatorcontrib>Willis, Michael</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osthus, Dave</au><au>Mendoza, Paul</au><au>Lalor, Peter</au><au>Casleton, Emily</au><au>Archer, Dan</au><au>Ghawaly, James</au><au>Garishvili, Irakli</au><au>Rowe, Andrew J.</au><au>Stewart, Ian R.</au><au>Willis, Michael</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the location of a road-constrained radioactive source with a network of detectors</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2022-09-11</date><risdate>2022</risdate><volume>1039</volume><spage>166992</spage><pages>166992-</pages><artnum>166992</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2022.166992</doi><orcidid>https://orcid.org/0000-0002-4681-091X</orcidid><orcidid>https://orcid.org/0000000329095704</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000188268500</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000196733310</orcidid><orcidid>https://orcid.org/000000024681091X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2022-09, Vol.1039, p.166992, Article 166992 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_osti_scitechconnect_1873944 |
source | ScienceDirect Journals |
subjects | Bayesian Constraints Dynamic modeling Inference INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Machine learning Uncertainty quantification |
title | Tracking the location of a road-constrained radioactive source with a network of detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20location%20of%20a%20road-constrained%20radioactive%20source%20with%20a%20network%20of%20detectors&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Osthus,%20Dave&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-09-11&rft.volume=1039&rft.spage=166992&rft.pages=166992-&rft.artnum=166992&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2022.166992&rft_dat=%3Celsevier_osti_%3ES0168900222004284%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |