Loading…

Tracking the location of a road-constrained radioactive source with a network of detectors

Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2022-09, Vol.1039, p.166992, Article 166992
Main Authors: Osthus, Dave, Mendoza, Paul, Lalor, Peter, Casleton, Emily, Archer, Dan, Ghawaly, James, Garishvili, Irakli, Rowe, Andrew J., Stewart, Ian R., Willis, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3
cites cdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3
container_end_page
container_issue
container_start_page 166992
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 1039
creator Osthus, Dave
Mendoza, Paul
Lalor, Peter
Casleton, Emily
Archer, Dan
Ghawaly, James
Garishvili, Irakli
Rowe, Andrew J.
Stewart, Ian R.
Willis, Michael
description Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.
doi_str_mv 10.1016/j.nima.2022.166992
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1873944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900222004284</els_id><sourcerecordid>S0168900222004284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9A66I-xmBeTAkbkzjK2nipm7ckDsXxtLWwQC28d_LpK5lczfnO5x8hFxzVnLG29tNObpPKAUTouRtq5Q4ITPeSVGoRranZJZDXaEYE-fkIsYNy0_JbkbeVwFw68YPmtaW7jxCcn6kfqBAgwdToB9jCuBGa2gA4zxgcntLo_8OaOnBpXWOjjYdfNhOnLHJYvIhXpKzAXbRXv3dOXl7fFgtnovl69PL4n5ZYCV5KlBKbAyiVP3QNhUI1g8AyvZNPTQIHRuwaxjUbSMQWwOd7KXoeF0pqIVlppqTm2Ovj8npiC7_v86zxzxDZweVquscEscQBh9jsIP-CtlY-NGc6Umh3uhJoZ4U6qPCDN0dIZvn750NU7sd0RoXpnLj3X_4L97Re58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tracking the location of a road-constrained radioactive source with a network of detectors</title><source>ScienceDirect Journals</source><creator>Osthus, Dave ; Mendoza, Paul ; Lalor, Peter ; Casleton, Emily ; Archer, Dan ; Ghawaly, James ; Garishvili, Irakli ; Rowe, Andrew J. ; Stewart, Ian R. ; Willis, Michael</creator><creatorcontrib>Osthus, Dave ; Mendoza, Paul ; Lalor, Peter ; Casleton, Emily ; Archer, Dan ; Ghawaly, James ; Garishvili, Irakli ; Rowe, Andrew J. ; Stewart, Ian R. ; Willis, Michael ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2022.166992</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Bayesian ; Constraints ; Dynamic modeling ; Inference ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Machine learning ; Uncertainty quantification</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2022-09, Vol.1039, p.166992, Article 166992</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</citedby><cites>FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</cites><orcidid>0000-0002-4681-091X ; 0000000329095704 ; 0000000333976109 ; 0000000188268500 ; 0000000333821174 ; 0000000196733310 ; 000000024681091X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1873944$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osthus, Dave</creatorcontrib><creatorcontrib>Mendoza, Paul</creatorcontrib><creatorcontrib>Lalor, Peter</creatorcontrib><creatorcontrib>Casleton, Emily</creatorcontrib><creatorcontrib>Archer, Dan</creatorcontrib><creatorcontrib>Ghawaly, James</creatorcontrib><creatorcontrib>Garishvili, Irakli</creatorcontrib><creatorcontrib>Rowe, Andrew J.</creatorcontrib><creatorcontrib>Stewart, Ian R.</creatorcontrib><creatorcontrib>Willis, Michael</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tracking the location of a road-constrained radioactive source with a network of detectors</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.</description><subject>Bayesian</subject><subject>Constraints</subject><subject>Dynamic modeling</subject><subject>Inference</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Machine learning</subject><subject>Uncertainty quantification</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRxFr9A66I-xmBeTAkbkzjK2nipm7ckDsXxtLWwQC28d_LpK5lczfnO5x8hFxzVnLG29tNObpPKAUTouRtq5Q4ITPeSVGoRranZJZDXaEYE-fkIsYNy0_JbkbeVwFw68YPmtaW7jxCcn6kfqBAgwdToB9jCuBGa2gA4zxgcntLo_8OaOnBpXWOjjYdfNhOnLHJYvIhXpKzAXbRXv3dOXl7fFgtnovl69PL4n5ZYCV5KlBKbAyiVP3QNhUI1g8AyvZNPTQIHRuwaxjUbSMQWwOd7KXoeF0pqIVlppqTm2Ovj8npiC7_v86zxzxDZweVquscEscQBh9jsIP-CtlY-NGc6Umh3uhJoZ4U6qPCDN0dIZvn750NU7sd0RoXpnLj3X_4L97Re58</recordid><startdate>20220911</startdate><enddate>20220911</enddate><creator>Osthus, Dave</creator><creator>Mendoza, Paul</creator><creator>Lalor, Peter</creator><creator>Casleton, Emily</creator><creator>Archer, Dan</creator><creator>Ghawaly, James</creator><creator>Garishvili, Irakli</creator><creator>Rowe, Andrew J.</creator><creator>Stewart, Ian R.</creator><creator>Willis, Michael</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4681-091X</orcidid><orcidid>https://orcid.org/0000000329095704</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000188268500</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000196733310</orcidid><orcidid>https://orcid.org/000000024681091X</orcidid></search><sort><creationdate>20220911</creationdate><title>Tracking the location of a road-constrained radioactive source with a network of detectors</title><author>Osthus, Dave ; Mendoza, Paul ; Lalor, Peter ; Casleton, Emily ; Archer, Dan ; Ghawaly, James ; Garishvili, Irakli ; Rowe, Andrew J. ; Stewart, Ian R. ; Willis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian</topic><topic>Constraints</topic><topic>Dynamic modeling</topic><topic>Inference</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Machine learning</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osthus, Dave</creatorcontrib><creatorcontrib>Mendoza, Paul</creatorcontrib><creatorcontrib>Lalor, Peter</creatorcontrib><creatorcontrib>Casleton, Emily</creatorcontrib><creatorcontrib>Archer, Dan</creatorcontrib><creatorcontrib>Ghawaly, James</creatorcontrib><creatorcontrib>Garishvili, Irakli</creatorcontrib><creatorcontrib>Rowe, Andrew J.</creatorcontrib><creatorcontrib>Stewart, Ian R.</creatorcontrib><creatorcontrib>Willis, Michael</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osthus, Dave</au><au>Mendoza, Paul</au><au>Lalor, Peter</au><au>Casleton, Emily</au><au>Archer, Dan</au><au>Ghawaly, James</au><au>Garishvili, Irakli</au><au>Rowe, Andrew J.</au><au>Stewart, Ian R.</au><au>Willis, Michael</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the location of a road-constrained radioactive source with a network of detectors</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2022-09-11</date><risdate>2022</risdate><volume>1039</volume><spage>166992</spage><pages>166992-</pages><artnum>166992</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Data collected from a network of detectors and analyzed together has the opportunity to provide a more complete picture than when the data from each individual detector are analyzed independently. However, even with a dense array of detectors, the network data will not provide a complete picture and constraints will need to be added to the model in order to maximize the usefulness of the conclusions that can be drawn. In this work, we demonstrate this concept by considering the task of tracking a moving radioactive source of special nuclear material in a structured environment with data from a network of radiation detectors. Our approach uses a Bayesian model and analysis that naturally provides uncertainty in the estimate of the source’s dynamic location. We find that adding domain aware constraints to a Bayesian model (e.g., the location of the road) can improve both location inference and do so with diminished uncertainty even though the fit to gamma count data is largely unchanged.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2022.166992</doi><orcidid>https://orcid.org/0000-0002-4681-091X</orcidid><orcidid>https://orcid.org/0000000329095704</orcidid><orcidid>https://orcid.org/0000000333976109</orcidid><orcidid>https://orcid.org/0000000188268500</orcidid><orcidid>https://orcid.org/0000000333821174</orcidid><orcidid>https://orcid.org/0000000196733310</orcidid><orcidid>https://orcid.org/000000024681091X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2022-09, Vol.1039, p.166992, Article 166992
issn 0168-9002
1872-9576
language eng
recordid cdi_osti_scitechconnect_1873944
source ScienceDirect Journals
subjects Bayesian
Constraints
Dynamic modeling
Inference
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Machine learning
Uncertainty quantification
title Tracking the location of a road-constrained radioactive source with a network of detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20location%20of%20a%20road-constrained%20radioactive%20source%20with%20a%20network%20of%20detectors&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Osthus,%20Dave&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-09-11&rft.volume=1039&rft.spage=166992&rft.pages=166992-&rft.artnum=166992&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2022.166992&rft_dat=%3Celsevier_osti_%3ES0168900222004284%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-c77c5dcc79bf653a20bfaa9eb54f5ca80fc850a4652cc6da87b7281439a42e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true