Loading…

Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking

Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluorescence 2022-09, Vol.32 (5), p.1779-1787
Main Authors: Xue, Lianjie, Jin, Shiqiang, Nagasaka, Shinobu, Higgins, Daniel A., Ito, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063
cites cdi_FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063
container_end_page 1787
container_issue 5
container_start_page 1779
container_title Journal of fluorescence
container_volume 32
creator Xue, Lianjie
Jin, Shiqiang
Nagasaka, Shinobu
Higgins, Daniel A.
Ito, Takashi
description Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene- block -poly(ethylene oxide) (PS- b -PEO) thin films characterized under a water-saturated N 2  atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems. Graphical Abstract
doi_str_mv 10.1007/s10895-022-02975-6
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1874680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675606752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqXwAhyQRS9cArZjO_aRLl2o1BWHbs-W15nsunXsxU4Q-0Y8Jl7SgsSBg_9o_JtvxvNV1WuC3xOM2w-ZYKl4jSktS7W8Fk-qU8LbpmZKsafljnlTY47VSfUi5zuMsZJMPq9OGi6kallzWv28Ct8hj25rRhcDij1aRQ928iahT67vp3wMmxFd-Gjv0SLuoz8MkNB65wJaOj9kdJtd2KKV-eGGaUCXYUxxf0ArGHexqy9Mhg4t_RQTZAvBQhFJCfxc8GYPtvDZHlNM6NBN0fLw2AWgdTL2vsReVs964zO8ejjPqtvl5Xrxpb7--vlq8fG6toyJsaaCWtxaC01DyGYjrep6IFYaxiXHGyEFs1J0jaUUlKKsZQJzbokQoHqJRXNWvZ11Y5mKztaNYHc2hlD61EQWXuICvZuhfYrfpjI_PbjyOe9NgDhlTUXLBS4bLej5P-hdnFIoX9C0xYJi2XJWKDpTtswiJ-j1PrnBpIMmWB_N1rPZupitf5utj62-eZCeNgN0f1Ie3S1AMwO5PIUtpL-1_yP7C28utms</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706208754</pqid></control><display><type>article</type><title>Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking</title><source>Springer Link</source><creator>Xue, Lianjie ; Jin, Shiqiang ; Nagasaka, Shinobu ; Higgins, Daniel A. ; Ito, Takashi</creator><creatorcontrib>Xue, Lianjie ; Jin, Shiqiang ; Nagasaka, Shinobu ; Higgins, Daniel A. ; Ito, Takashi ; Kansas State Univ., Manhattan, KS (United States)</creatorcontrib><description>Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene- block -poly(ethylene oxide) (PS- b -PEO) thin films characterized under a water-saturated N 2  atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems. Graphical Abstract</description><identifier>ISSN: 1053-0509</identifier><identifier>EISSN: 1573-4994</identifier><identifier>DOI: 10.1007/s10895-022-02975-6</identifier><identifier>PMID: 35689743</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Atmospheric models ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedicine ; Biophysics ; Biotechnology ; block copolymer ; Block copolymers ; Coefficients ; Data acquisition ; Data analysis ; Diffusion barriers ; Diffusion rate ; Ethylene oxide ; fluorescence correlation spectroscopy ; fluorescence correlation spectroscopy, maximum entropy method, single-molecule tracking, block copolymer ; Fluorescent indicators ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Investigations ; Maximum entropy method ; Molecular diffusion ; Polyethylene oxide ; Polystyrene resins ; single-molecule tracking ; Spectroscopy ; Spectrum analysis ; Thin films ; Tracking</subject><ispartof>Journal of fluorescence, 2022-09, Vol.32 (5), p.1779-1787</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063</citedby><cites>FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063</cites><orcidid>0000-0002-2449-6499 ; 0000-0001-7443-3157 ; 0000-0002-8011-2648 ; 0000-0003-0222-3905 ; 0000000302223905 ; 0000000280112648 ; 0000000224496499 ; 0000000174433157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35689743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1874680$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Lianjie</creatorcontrib><creatorcontrib>Jin, Shiqiang</creatorcontrib><creatorcontrib>Nagasaka, Shinobu</creatorcontrib><creatorcontrib>Higgins, Daniel A.</creatorcontrib><creatorcontrib>Ito, Takashi</creatorcontrib><creatorcontrib>Kansas State Univ., Manhattan, KS (United States)</creatorcontrib><title>Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking</title><title>Journal of fluorescence</title><addtitle>J Fluoresc</addtitle><addtitle>J Fluoresc</addtitle><description>Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene- block -poly(ethylene oxide) (PS- b -PEO) thin films characterized under a water-saturated N 2  atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems. Graphical Abstract</description><subject>Analytical Chemistry</subject><subject>Atmospheric models</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>block copolymer</subject><subject>Block copolymers</subject><subject>Coefficients</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Ethylene oxide</subject><subject>fluorescence correlation spectroscopy</subject><subject>fluorescence correlation spectroscopy, maximum entropy method, single-molecule tracking, block copolymer</subject><subject>Fluorescent indicators</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Investigations</subject><subject>Maximum entropy method</subject><subject>Molecular diffusion</subject><subject>Polyethylene oxide</subject><subject>Polystyrene resins</subject><subject>single-molecule tracking</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Tracking</subject><issn>1053-0509</issn><issn>1573-4994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxiMEoqXwAhyQRS9cArZjO_aRLl2o1BWHbs-W15nsunXsxU4Q-0Y8Jl7SgsSBg_9o_JtvxvNV1WuC3xOM2w-ZYKl4jSktS7W8Fk-qU8LbpmZKsafljnlTY47VSfUi5zuMsZJMPq9OGi6kallzWv28Ct8hj25rRhcDij1aRQ928iahT67vp3wMmxFd-Gjv0SLuoz8MkNB65wJaOj9kdJtd2KKV-eGGaUCXYUxxf0ArGHexqy9Mhg4t_RQTZAvBQhFJCfxc8GYPtvDZHlNM6NBN0fLw2AWgdTL2vsReVs964zO8ejjPqtvl5Xrxpb7--vlq8fG6toyJsaaCWtxaC01DyGYjrep6IFYaxiXHGyEFs1J0jaUUlKKsZQJzbokQoHqJRXNWvZ11Y5mKztaNYHc2hlD61EQWXuICvZuhfYrfpjI_PbjyOe9NgDhlTUXLBS4bLej5P-hdnFIoX9C0xYJi2XJWKDpTtswiJ-j1PrnBpIMmWB_N1rPZupitf5utj62-eZCeNgN0f1Ie3S1AMwO5PIUtpL-1_yP7C28utms</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Xue, Lianjie</creator><creator>Jin, Shiqiang</creator><creator>Nagasaka, Shinobu</creator><creator>Higgins, Daniel A.</creator><creator>Ito, Takashi</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2449-6499</orcidid><orcidid>https://orcid.org/0000-0001-7443-3157</orcidid><orcidid>https://orcid.org/0000-0002-8011-2648</orcidid><orcidid>https://orcid.org/0000-0003-0222-3905</orcidid><orcidid>https://orcid.org/0000000302223905</orcidid><orcidid>https://orcid.org/0000000280112648</orcidid><orcidid>https://orcid.org/0000000224496499</orcidid><orcidid>https://orcid.org/0000000174433157</orcidid></search><sort><creationdate>20220901</creationdate><title>Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking</title><author>Xue, Lianjie ; Jin, Shiqiang ; Nagasaka, Shinobu ; Higgins, Daniel A. ; Ito, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Atmospheric models</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>block copolymer</topic><topic>Block copolymers</topic><topic>Coefficients</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Ethylene oxide</topic><topic>fluorescence correlation spectroscopy</topic><topic>fluorescence correlation spectroscopy, maximum entropy method, single-molecule tracking, block copolymer</topic><topic>Fluorescent indicators</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Investigations</topic><topic>Maximum entropy method</topic><topic>Molecular diffusion</topic><topic>Polyethylene oxide</topic><topic>Polystyrene resins</topic><topic>single-molecule tracking</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Lianjie</creatorcontrib><creatorcontrib>Jin, Shiqiang</creatorcontrib><creatorcontrib>Nagasaka, Shinobu</creatorcontrib><creatorcontrib>Higgins, Daniel A.</creatorcontrib><creatorcontrib>Ito, Takashi</creatorcontrib><creatorcontrib>Kansas State Univ., Manhattan, KS (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of fluorescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Lianjie</au><au>Jin, Shiqiang</au><au>Nagasaka, Shinobu</au><au>Higgins, Daniel A.</au><au>Ito, Takashi</au><aucorp>Kansas State Univ., Manhattan, KS (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking</atitle><jtitle>Journal of fluorescence</jtitle><stitle>J Fluoresc</stitle><addtitle>J Fluoresc</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>1779</spage><epage>1787</epage><pages>1779-1787</pages><issn>1053-0509</issn><eissn>1573-4994</eissn><abstract>Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene- block -poly(ethylene oxide) (PS- b -PEO) thin films characterized under a water-saturated N 2  atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35689743</pmid><doi>10.1007/s10895-022-02975-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2449-6499</orcidid><orcidid>https://orcid.org/0000-0001-7443-3157</orcidid><orcidid>https://orcid.org/0000-0002-8011-2648</orcidid><orcidid>https://orcid.org/0000-0003-0222-3905</orcidid><orcidid>https://orcid.org/0000000302223905</orcidid><orcidid>https://orcid.org/0000000280112648</orcidid><orcidid>https://orcid.org/0000000224496499</orcidid><orcidid>https://orcid.org/0000000174433157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-0509
ispartof Journal of fluorescence, 2022-09, Vol.32 (5), p.1779-1787
issn 1053-0509
1573-4994
language eng
recordid cdi_osti_scitechconnect_1874680
source Springer Link
subjects Analytical Chemistry
Atmospheric models
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedicine
Biophysics
Biotechnology
block copolymer
Block copolymers
Coefficients
Data acquisition
Data analysis
Diffusion barriers
Diffusion rate
Ethylene oxide
fluorescence correlation spectroscopy
fluorescence correlation spectroscopy, maximum entropy method, single-molecule tracking, block copolymer
Fluorescent indicators
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Investigations
Maximum entropy method
Molecular diffusion
Polyethylene oxide
Polystyrene resins
single-molecule tracking
Spectroscopy
Spectrum analysis
Thin films
Tracking
title Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Molecular%20Diffusion%20at%20Block%20Copolymer%20Thin%20Films%20Using%20Maximum%20Entropy%20Method-Based%20Fluorescence%20Correlation%20Spectroscopy%20and%20Single%20Molecule%20Tracking&rft.jtitle=Journal%20of%20fluorescence&rft.au=Xue,%20Lianjie&rft.aucorp=Kansas%20State%20Univ.,%20Manhattan,%20KS%20(United%20States)&rft.date=2022-09-01&rft.volume=32&rft.issue=5&rft.spage=1779&rft.epage=1787&rft.pages=1779-1787&rft.issn=1053-0509&rft.eissn=1573-4994&rft_id=info:doi/10.1007/s10895-022-02975-6&rft_dat=%3Cproquest_osti_%3E2675606752%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-262c07cce3311bb8c9dfe1c8a45850b6864c86d3c22e9924746055c166e9f8063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706208754&rft_id=info:pmid/35689743&rfr_iscdi=true