Loading…

Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion

Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) Bulk metallic glass is processed by High-Pressure Torsion up to 30 rotations at room temperature, showing simultaneous enhancement of both strength (2023 MPa) and ductility (0.45%). Nano-crystal precipitates with an average size of 45 nm inside the amorphous matrix...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.803 (C), p.140485, Article 140485
Main Authors: Ren, Zhi Qiang, Churakova, A.A., Wang, Xiang, Goel, Sunkulp, Liu, Si Nan, You, Ze Sheng, Liu, Ying, Lan, Si, Gunderov, D.V., Wang, Jing Tao, Valiev, R.Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593
cites cdi_FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593
container_end_page
container_issue C
container_start_page 140485
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 803
creator Ren, Zhi Qiang
Churakova, A.A.
Wang, Xiang
Goel, Sunkulp
Liu, Si Nan
You, Ze Sheng
Liu, Ying
Lan, Si
Gunderov, D.V.
Wang, Jing Tao
Valiev, R.Z.
description Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) Bulk metallic glass is processed by High-Pressure Torsion up to 30 rotations at room temperature, showing simultaneous enhancement of both strength (2023 MPa) and ductility (0.45%). Nano-crystal precipitates with an average size of 45 nm inside the amorphous matrix are observed after 30 turns HPT. Free volume increases from ~0.9030 Å3 (as cast) to ~0.9275Å3 after 30 turn HPT alloy with 2.83% (by volume) of nanocrystal precipitates. Strengthening due to precipitation after 30 turns HPT comply with the phase mixture model. The synergetic effect of free volume and nanocrystal precipitation on the ductility of amorphous-crystallite composite is quantitatively approached through modelling. By implementing the model, a ductilization window between bottom limit and top limit of the inter-crystallite spacing w.r.t the free volume is established, elucidating the necessary conditions required to obtain plasticity in amorphous-crystalline composites. •Both ductility and strength of BMGs are enhanced by HPT processing.•The nanocrystals precipitation during HPT increases the strength.•Free volume increase during HPT enhances ductility and reduces yield stress.•Synergetic effect of free volume and nanocrystals on ductility was observed.•Mechanism based-modelling correctly predict the synergetic effect on ductility.
doi_str_mv 10.1016/j.msea.2020.140485
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1874711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320315483</els_id><sourcerecordid>2493860957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593</originalsourceid><addsrcrecordid>eNp9kUFP3DAQha2KSl0of4CTVc5JbcdOYokLWgGthNoLXLhYXnuy8TZrL7aDxL_HUTj3NNLoe6M37yF0RUlNCW1_HupjAl0zwsqCE96LL2hD-66puGzaM7QhktFKENl8Q-cpHQghBRMblO_8qL0BizP45CbAKUfw-zxi7S22s8lucvkdhwHv5ukfPkLW0-QM3k86JUj4JQpWi-1Mu1reTpT8cZTX7ZMT-M1pPLr9WJ0ipDRHwDnE5IL_jr4Oekpw-Tkv0PP93dP2V_X49-H39vaxMo2UubLWEmmaZug71nPZSxi4bneitS1njNChN2xnOdFtSyRndKBUDxJs-YzoRsjmAv1Y74aUnUrGZTCjCd6DyaqkwztKC3S9QqcYXmdIWR3CHH3xpVgJry-3RVcotlImhpQiDOoU3VHHd0WJWipQB7VUoJYK1FpBEd2sIihPvjmIiwdY0nZxsWCD-5_8A_lYjRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493860957</pqid></control><display><type>article</type><title>Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion</title><source>ScienceDirect Journals</source><creator>Ren, Zhi Qiang ; Churakova, A.A. ; Wang, Xiang ; Goel, Sunkulp ; Liu, Si Nan ; You, Ze Sheng ; Liu, Ying ; Lan, Si ; Gunderov, D.V. ; Wang, Jing Tao ; Valiev, R.Z.</creator><creatorcontrib>Ren, Zhi Qiang ; Churakova, A.A. ; Wang, Xiang ; Goel, Sunkulp ; Liu, Si Nan ; You, Ze Sheng ; Liu, Ying ; Lan, Si ; Gunderov, D.V. ; Wang, Jing Tao ; Valiev, R.Z.</creatorcontrib><description>Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) Bulk metallic glass is processed by High-Pressure Torsion up to 30 rotations at room temperature, showing simultaneous enhancement of both strength (2023 MPa) and ductility (0.45%). Nano-crystal precipitates with an average size of 45 nm inside the amorphous matrix are observed after 30 turns HPT. Free volume increases from ~0.9030 Å3 (as cast) to ~0.9275Å3 after 30 turn HPT alloy with 2.83% (by volume) of nanocrystal precipitates. Strengthening due to precipitation after 30 turns HPT comply with the phase mixture model. The synergetic effect of free volume and nanocrystal precipitation on the ductility of amorphous-crystallite composite is quantitatively approached through modelling. By implementing the model, a ductilization window between bottom limit and top limit of the inter-crystallite spacing w.r.t the free volume is established, elucidating the necessary conditions required to obtain plasticity in amorphous-crystalline composites. •Both ductility and strength of BMGs are enhanced by HPT processing.•The nanocrystals precipitation during HPT increases the strength.•Free volume increase during HPT enhances ductility and reduces yield stress.•Synergetic effect of free volume and nanocrystals on ductility was observed.•Mechanism based-modelling correctly predict the synergetic effect on ductility.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140485</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amorphous materials ; Amorphous-crystalline composites ; Chemical precipitation ; Crystallites ; Ductility ; Ductilization window ; Free volume ; Inter-crystallite spacing ; Metallic glasses ; Nanocrystals ; Precipitates ; Room temperature ; Strength ; Tensile ductility ; Tensile strength</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803 (C), p.140485, Article 140485</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 28, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593</citedby><cites>FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593</cites><orcidid>0000-0002-3149-7940 ; 0000-0002-3104-4909 ; 0000000231044909 ; 0000000231497940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1874711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Zhi Qiang</creatorcontrib><creatorcontrib>Churakova, A.A.</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Goel, Sunkulp</creatorcontrib><creatorcontrib>Liu, Si Nan</creatorcontrib><creatorcontrib>You, Ze Sheng</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Lan, Si</creatorcontrib><creatorcontrib>Gunderov, D.V.</creatorcontrib><creatorcontrib>Wang, Jing Tao</creatorcontrib><creatorcontrib>Valiev, R.Z.</creatorcontrib><title>Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) Bulk metallic glass is processed by High-Pressure Torsion up to 30 rotations at room temperature, showing simultaneous enhancement of both strength (2023 MPa) and ductility (0.45%). Nano-crystal precipitates with an average size of 45 nm inside the amorphous matrix are observed after 30 turns HPT. Free volume increases from ~0.9030 Å3 (as cast) to ~0.9275Å3 after 30 turn HPT alloy with 2.83% (by volume) of nanocrystal precipitates. Strengthening due to precipitation after 30 turns HPT comply with the phase mixture model. The synergetic effect of free volume and nanocrystal precipitation on the ductility of amorphous-crystallite composite is quantitatively approached through modelling. By implementing the model, a ductilization window between bottom limit and top limit of the inter-crystallite spacing w.r.t the free volume is established, elucidating the necessary conditions required to obtain plasticity in amorphous-crystalline composites. •Both ductility and strength of BMGs are enhanced by HPT processing.•The nanocrystals precipitation during HPT increases the strength.•Free volume increase during HPT enhances ductility and reduces yield stress.•Synergetic effect of free volume and nanocrystals on ductility was observed.•Mechanism based-modelling correctly predict the synergetic effect on ductility.</description><subject>Amorphous materials</subject><subject>Amorphous-crystalline composites</subject><subject>Chemical precipitation</subject><subject>Crystallites</subject><subject>Ductility</subject><subject>Ductilization window</subject><subject>Free volume</subject><subject>Inter-crystallite spacing</subject><subject>Metallic glasses</subject><subject>Nanocrystals</subject><subject>Precipitates</subject><subject>Room temperature</subject><subject>Strength</subject><subject>Tensile ductility</subject><subject>Tensile strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQha2KSl0of4CTVc5JbcdOYokLWgGthNoLXLhYXnuy8TZrL7aDxL_HUTj3NNLoe6M37yF0RUlNCW1_HupjAl0zwsqCE96LL2hD-66puGzaM7QhktFKENl8Q-cpHQghBRMblO_8qL0BizP45CbAKUfw-zxi7S22s8lucvkdhwHv5ukfPkLW0-QM3k86JUj4JQpWi-1Mu1reTpT8cZTX7ZMT-M1pPLr9WJ0ipDRHwDnE5IL_jr4Oekpw-Tkv0PP93dP2V_X49-H39vaxMo2UubLWEmmaZug71nPZSxi4bneitS1njNChN2xnOdFtSyRndKBUDxJs-YzoRsjmAv1Y74aUnUrGZTCjCd6DyaqkwztKC3S9QqcYXmdIWR3CHH3xpVgJry-3RVcotlImhpQiDOoU3VHHd0WJWipQB7VUoJYK1FpBEd2sIihPvjmIiwdY0nZxsWCD-5_8A_lYjRk</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Ren, Zhi Qiang</creator><creator>Churakova, A.A.</creator><creator>Wang, Xiang</creator><creator>Goel, Sunkulp</creator><creator>Liu, Si Nan</creator><creator>You, Ze Sheng</creator><creator>Liu, Ying</creator><creator>Lan, Si</creator><creator>Gunderov, D.V.</creator><creator>Wang, Jing Tao</creator><creator>Valiev, R.Z.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3149-7940</orcidid><orcidid>https://orcid.org/0000-0002-3104-4909</orcidid><orcidid>https://orcid.org/0000000231044909</orcidid><orcidid>https://orcid.org/0000000231497940</orcidid></search><sort><creationdate>20210128</creationdate><title>Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion</title><author>Ren, Zhi Qiang ; Churakova, A.A. ; Wang, Xiang ; Goel, Sunkulp ; Liu, Si Nan ; You, Ze Sheng ; Liu, Ying ; Lan, Si ; Gunderov, D.V. ; Wang, Jing Tao ; Valiev, R.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Amorphous-crystalline composites</topic><topic>Chemical precipitation</topic><topic>Crystallites</topic><topic>Ductility</topic><topic>Ductilization window</topic><topic>Free volume</topic><topic>Inter-crystallite spacing</topic><topic>Metallic glasses</topic><topic>Nanocrystals</topic><topic>Precipitates</topic><topic>Room temperature</topic><topic>Strength</topic><topic>Tensile ductility</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhi Qiang</creatorcontrib><creatorcontrib>Churakova, A.A.</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Goel, Sunkulp</creatorcontrib><creatorcontrib>Liu, Si Nan</creatorcontrib><creatorcontrib>You, Ze Sheng</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Lan, Si</creatorcontrib><creatorcontrib>Gunderov, D.V.</creatorcontrib><creatorcontrib>Wang, Jing Tao</creatorcontrib><creatorcontrib>Valiev, R.Z.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhi Qiang</au><au>Churakova, A.A.</au><au>Wang, Xiang</au><au>Goel, Sunkulp</au><au>Liu, Si Nan</au><au>You, Ze Sheng</au><au>Liu, Ying</au><au>Lan, Si</au><au>Gunderov, D.V.</au><au>Wang, Jing Tao</au><au>Valiev, R.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>803</volume><issue>C</issue><spage>140485</spage><pages>140485-</pages><artnum>140485</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) Bulk metallic glass is processed by High-Pressure Torsion up to 30 rotations at room temperature, showing simultaneous enhancement of both strength (2023 MPa) and ductility (0.45%). Nano-crystal precipitates with an average size of 45 nm inside the amorphous matrix are observed after 30 turns HPT. Free volume increases from ~0.9030 Å3 (as cast) to ~0.9275Å3 after 30 turn HPT alloy with 2.83% (by volume) of nanocrystal precipitates. Strengthening due to precipitation after 30 turns HPT comply with the phase mixture model. The synergetic effect of free volume and nanocrystal precipitation on the ductility of amorphous-crystallite composite is quantitatively approached through modelling. By implementing the model, a ductilization window between bottom limit and top limit of the inter-crystallite spacing w.r.t the free volume is established, elucidating the necessary conditions required to obtain plasticity in amorphous-crystalline composites. •Both ductility and strength of BMGs are enhanced by HPT processing.•The nanocrystals precipitation during HPT increases the strength.•Free volume increase during HPT enhances ductility and reduces yield stress.•Synergetic effect of free volume and nanocrystals on ductility was observed.•Mechanism based-modelling correctly predict the synergetic effect on ductility.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140485</doi><orcidid>https://orcid.org/0000-0002-3149-7940</orcidid><orcidid>https://orcid.org/0000-0002-3104-4909</orcidid><orcidid>https://orcid.org/0000000231044909</orcidid><orcidid>https://orcid.org/0000000231497940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.803 (C), p.140485, Article 140485
issn 0921-5093
1873-4936
language eng
recordid cdi_osti_scitechconnect_1874711
source ScienceDirect Journals
subjects Amorphous materials
Amorphous-crystalline composites
Chemical precipitation
Crystallites
Ductility
Ductilization window
Free volume
Inter-crystallite spacing
Metallic glasses
Nanocrystals
Precipitates
Room temperature
Strength
Tensile ductility
Tensile strength
title Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20tensile%20strength%20and%20ductility%20of%20bulk%20metallic%20glasses%20Zr52.5Cu17.9Al10Ni14.6Ti5%20via%20high-pressure%20torsion&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Ren,%20Zhi%20Qiang&rft.date=2021-01-28&rft.volume=803&rft.issue=C&rft.spage=140485&rft.pages=140485-&rft.artnum=140485&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140485&rft_dat=%3Cproquest_osti_%3E2493860957%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-ddd09c33f87284989ef4a6b56d642201f8c2bd40a6609421f11af9ed1400a3593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2493860957&rft_id=info:pmid/&rfr_iscdi=true