Loading…

Functional Nanostructured Plasmonic Materials

Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective meth...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2010-03, Vol.22 (10), p.1102-1110
Main Authors: Yao, Jimin, Le, An-Phong, Gray, Stephen K., Moore, Jeffrey S., Rogers, John A., Nuzzo, Ralph G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333
cites cdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333
container_end_page 1110
container_issue 10
container_start_page 1102
container_title Advanced materials (Weinheim)
container_volume 22
creator Yao, Jimin
Le, An-Phong
Gray, Stephen K.
Moore, Jeffrey S.
Rogers, John A.
Nuzzo, Ralph G.
description Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications. Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.
doi_str_mv 10.1002/adma.200904097
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1875440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733390607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgWh5rIyoYmFKuXbi11iVp0QLCBBslus4wpAH2ImAf4-rQMXW6d7hu8fWQegAwxgDkBOdV3pMACRkIPkGGmJKcBJ3uomGIFOaSJaJAdoJ4RUiY8C20YBEjWWaDVFy3tWmdU2ty9Fc101ofWfaztt8dFvqUDW1M6OZbq13ugx7aKuIw-7_zl30eH72ML1Mrm8urqaT68TQjPNkQSnXGcVaLqwV1Fgu9HKXheYQSVEYSViem5zgzBAohF3goiApp4SZNE130VGfG__jVDCutebFNHVtTauw4DTLIKLjHr375qOzoVWVC8aWpa5t0wUlBDBBBBNrJY9PSmDAoxz30vgmBG8L9e5dpf23wqCWhatl4WpVeDw4_I3uFpXNV_yv4QhkDz5dab_XxKnJ6WzyPzzpb11o7dfqVvs3xXgsSz3NLxQ_fZrf3z6Dukt_AO0Omw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733390607</pqid></control><display><type>article</type><title>Functional Nanostructured Plasmonic Materials</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yao, Jimin ; Le, An-Phong ; Gray, Stephen K. ; Moore, Jeffrey S. ; Rogers, John A. ; Nuzzo, Ralph G.</creator><creatorcontrib>Yao, Jimin ; Le, An-Phong ; Gray, Stephen K. ; Moore, Jeffrey S. ; Rogers, John A. ; Nuzzo, Ralph G. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications. Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.200904097</identifier><identifier>PMID: 20401934</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Arrays ; Biosensing Techniques ; Biosensors ; Crystallization ; Crystals ; Devices ; Gold - chemistry ; MATERIALS SCIENCE ; Micrometers ; Monolayers ; Nanocomposites ; Nanodevices ; Nanoimprinting ; Nanomaterials ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Plasmonics ; Sensors ; Sulfhydryl Compounds - chemistry ; Surface plasmon resonance</subject><ispartof>Advanced materials (Weinheim), 2010-03, Vol.22 (10), p.1102-1110</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</citedby><cites>FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20401934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1875440$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Jimin</creatorcontrib><creatorcontrib>Le, An-Phong</creatorcontrib><creatorcontrib>Gray, Stephen K.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Functional Nanostructured Plasmonic Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications. Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.</description><subject>Arrays</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Devices</subject><subject>Gold - chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>Micrometers</subject><subject>Monolayers</subject><subject>Nanocomposites</subject><subject>Nanodevices</subject><subject>Nanoimprinting</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Plasmonics</subject><subject>Sensors</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Surface plasmon resonance</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgWh5rIyoYmFKuXbi11iVp0QLCBBslus4wpAH2ImAf4-rQMXW6d7hu8fWQegAwxgDkBOdV3pMACRkIPkGGmJKcBJ3uomGIFOaSJaJAdoJ4RUiY8C20YBEjWWaDVFy3tWmdU2ty9Fc101ofWfaztt8dFvqUDW1M6OZbq13ugx7aKuIw-7_zl30eH72ML1Mrm8urqaT68TQjPNkQSnXGcVaLqwV1Fgu9HKXheYQSVEYSViem5zgzBAohF3goiApp4SZNE130VGfG__jVDCutebFNHVtTauw4DTLIKLjHr375qOzoVWVC8aWpa5t0wUlBDBBBBNrJY9PSmDAoxz30vgmBG8L9e5dpf23wqCWhatl4WpVeDw4_I3uFpXNV_yv4QhkDz5dab_XxKnJ6WzyPzzpb11o7dfqVvs3xXgsSz3NLxQ_fZrf3z6Dukt_AO0Omw8</recordid><startdate>20100312</startdate><enddate>20100312</enddate><creator>Yao, Jimin</creator><creator>Le, An-Phong</creator><creator>Gray, Stephen K.</creator><creator>Moore, Jeffrey S.</creator><creator>Rogers, John A.</creator><creator>Nuzzo, Ralph G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20100312</creationdate><title>Functional Nanostructured Plasmonic Materials</title><author>Yao, Jimin ; Le, An-Phong ; Gray, Stephen K. ; Moore, Jeffrey S. ; Rogers, John A. ; Nuzzo, Ralph G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Devices</topic><topic>Gold - chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>Micrometers</topic><topic>Monolayers</topic><topic>Nanocomposites</topic><topic>Nanodevices</topic><topic>Nanoimprinting</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Plasmonics</topic><topic>Sensors</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jimin</creatorcontrib><creatorcontrib>Le, An-Phong</creatorcontrib><creatorcontrib>Gray, Stephen K.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jimin</au><au>Le, An-Phong</au><au>Gray, Stephen K.</au><au>Moore, Jeffrey S.</au><au>Rogers, John A.</au><au>Nuzzo, Ralph G.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Nanostructured Plasmonic Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2010-03-12</date><risdate>2010</risdate><volume>22</volume><issue>10</issue><spage>1102</spage><epage>1110</epage><pages>1102-1110</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications. Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20401934</pmid><doi>10.1002/adma.200904097</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2010-03, Vol.22 (10), p.1102-1110
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_osti_scitechconnect_1875440
source Wiley-Blackwell Read & Publish Collection
subjects Arrays
Biosensing Techniques
Biosensors
Crystallization
Crystals
Devices
Gold - chemistry
MATERIALS SCIENCE
Micrometers
Monolayers
Nanocomposites
Nanodevices
Nanoimprinting
Nanomaterials
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Plasmonics
Sensors
Sulfhydryl Compounds - chemistry
Surface plasmon resonance
title Functional Nanostructured Plasmonic Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Nanostructured%20Plasmonic%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yao,%20Jimin&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2010-03-12&rft.volume=22&rft.issue=10&rft.spage=1102&rft.epage=1110&rft.pages=1102-1110&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.200904097&rft_dat=%3Cproquest_osti_%3E733390607%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733390607&rft_id=info:pmid/20401934&rfr_iscdi=true