Loading…
Functional Nanostructured Plasmonic Materials
Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective meth...
Saved in:
Published in: | Advanced materials (Weinheim) 2010-03, Vol.22 (10), p.1102-1110 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333 |
---|---|
cites | cdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333 |
container_end_page | 1110 |
container_issue | 10 |
container_start_page | 1102 |
container_title | Advanced materials (Weinheim) |
container_volume | 22 |
creator | Yao, Jimin Le, An-Phong Gray, Stephen K. Moore, Jeffrey S. Rogers, John A. Nuzzo, Ralph G. |
description | Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications.
Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal. |
doi_str_mv | 10.1002/adma.200904097 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1875440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733390607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgWh5rIyoYmFKuXbi11iVp0QLCBBslus4wpAH2ImAf4-rQMXW6d7hu8fWQegAwxgDkBOdV3pMACRkIPkGGmJKcBJ3uomGIFOaSJaJAdoJ4RUiY8C20YBEjWWaDVFy3tWmdU2ty9Fc101ofWfaztt8dFvqUDW1M6OZbq13ugx7aKuIw-7_zl30eH72ML1Mrm8urqaT68TQjPNkQSnXGcVaLqwV1Fgu9HKXheYQSVEYSViem5zgzBAohF3goiApp4SZNE130VGfG__jVDCutebFNHVtTauw4DTLIKLjHr375qOzoVWVC8aWpa5t0wUlBDBBBBNrJY9PSmDAoxz30vgmBG8L9e5dpf23wqCWhatl4WpVeDw4_I3uFpXNV_yv4QhkDz5dab_XxKnJ6WzyPzzpb11o7dfqVvs3xXgsSz3NLxQ_fZrf3z6Dukt_AO0Omw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733390607</pqid></control><display><type>article</type><title>Functional Nanostructured Plasmonic Materials</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yao, Jimin ; Le, An-Phong ; Gray, Stephen K. ; Moore, Jeffrey S. ; Rogers, John A. ; Nuzzo, Ralph G.</creator><creatorcontrib>Yao, Jimin ; Le, An-Phong ; Gray, Stephen K. ; Moore, Jeffrey S. ; Rogers, John A. ; Nuzzo, Ralph G. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications.
Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.200904097</identifier><identifier>PMID: 20401934</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Arrays ; Biosensing Techniques ; Biosensors ; Crystallization ; Crystals ; Devices ; Gold - chemistry ; MATERIALS SCIENCE ; Micrometers ; Monolayers ; Nanocomposites ; Nanodevices ; Nanoimprinting ; Nanomaterials ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Plasmonics ; Sensors ; Sulfhydryl Compounds - chemistry ; Surface plasmon resonance</subject><ispartof>Advanced materials (Weinheim), 2010-03, Vol.22 (10), p.1102-1110</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</citedby><cites>FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20401934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1875440$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Jimin</creatorcontrib><creatorcontrib>Le, An-Phong</creatorcontrib><creatorcontrib>Gray, Stephen K.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Functional Nanostructured Plasmonic Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications.
Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.</description><subject>Arrays</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Devices</subject><subject>Gold - chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>Micrometers</subject><subject>Monolayers</subject><subject>Nanocomposites</subject><subject>Nanodevices</subject><subject>Nanoimprinting</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Plasmonics</subject><subject>Sensors</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Surface plasmon resonance</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgWh5rIyoYmFKuXbi11iVp0QLCBBslus4wpAH2ImAf4-rQMXW6d7hu8fWQegAwxgDkBOdV3pMACRkIPkGGmJKcBJ3uomGIFOaSJaJAdoJ4RUiY8C20YBEjWWaDVFy3tWmdU2ty9Fc101ofWfaztt8dFvqUDW1M6OZbq13ugx7aKuIw-7_zl30eH72ML1Mrm8urqaT68TQjPNkQSnXGcVaLqwV1Fgu9HKXheYQSVEYSViem5zgzBAohF3goiApp4SZNE130VGfG__jVDCutebFNHVtTauw4DTLIKLjHr375qOzoVWVC8aWpa5t0wUlBDBBBBNrJY9PSmDAoxz30vgmBG8L9e5dpf23wqCWhatl4WpVeDw4_I3uFpXNV_yv4QhkDz5dab_XxKnJ6WzyPzzpb11o7dfqVvs3xXgsSz3NLxQ_fZrf3z6Dukt_AO0Omw8</recordid><startdate>20100312</startdate><enddate>20100312</enddate><creator>Yao, Jimin</creator><creator>Le, An-Phong</creator><creator>Gray, Stephen K.</creator><creator>Moore, Jeffrey S.</creator><creator>Rogers, John A.</creator><creator>Nuzzo, Ralph G.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20100312</creationdate><title>Functional Nanostructured Plasmonic Materials</title><author>Yao, Jimin ; Le, An-Phong ; Gray, Stephen K. ; Moore, Jeffrey S. ; Rogers, John A. ; Nuzzo, Ralph G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Devices</topic><topic>Gold - chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>Micrometers</topic><topic>Monolayers</topic><topic>Nanocomposites</topic><topic>Nanodevices</topic><topic>Nanoimprinting</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Plasmonics</topic><topic>Sensors</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jimin</creatorcontrib><creatorcontrib>Le, An-Phong</creatorcontrib><creatorcontrib>Gray, Stephen K.</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Nuzzo, Ralph G.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jimin</au><au>Le, An-Phong</au><au>Gray, Stephen K.</au><au>Moore, Jeffrey S.</au><au>Rogers, John A.</au><au>Nuzzo, Ralph G.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Nanostructured Plasmonic Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2010-03-12</date><risdate>2010</risdate><volume>22</volume><issue>10</issue><spage>1102</spage><epage>1110</epage><pages>1102-1110</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost‐effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab‐on‐a‐chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications.
Plasmonic crystals that offer exceptional analytical power along tunable wavelengths present a promising platform for the sensing and imaging of surface binding events with high spatial resolution and submonolayer sensitivity. The design, fabrication, and characterization of these devices and their applications in biochemical sensing and imaging are briefly reviewed here. The figure shows a transmitted white light plasmonic image of 1‐octadecanethiol lines printed on the Au surface of a full 3D plasmonic crystal.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20401934</pmid><doi>10.1002/adma.200904097</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2010-03, Vol.22 (10), p.1102-1110 |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1875440 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Arrays Biosensing Techniques Biosensors Crystallization Crystals Devices Gold - chemistry MATERIALS SCIENCE Micrometers Monolayers Nanocomposites Nanodevices Nanoimprinting Nanomaterials Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Plasmonics Sensors Sulfhydryl Compounds - chemistry Surface plasmon resonance |
title | Functional Nanostructured Plasmonic Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Nanostructured%20Plasmonic%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yao,%20Jimin&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2010-03-12&rft.volume=22&rft.issue=10&rft.spage=1102&rft.epage=1110&rft.pages=1102-1110&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.200904097&rft_dat=%3Cproquest_osti_%3E733390607%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5477-b557a451a9bee85ce78aa9be9fa70c54ffc926ddcd214c20f8eb1ff237526c333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733390607&rft_id=info:pmid/20401934&rfr_iscdi=true |