Loading…

Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations

Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (48), p.18675-18680
Main Authors: Kim, Dae-Hyeong, Song, Jizhou, Choi, Won Mook, Kim, Hoon-Sik, Kim, Rak-Hwan, Liu, Zhuangjian, Huang, Yonggang Y, Hwang, Keh-Chih, Zhang, Yong-wei, Rogers, John A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3
cites cdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3
container_end_page 18680
container_issue 48
container_start_page 18675
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Kim, Dae-Hyeong
Song, Jizhou
Choi, Won Mook
Kim, Hoon-Sik
Kim, Rak-Hwan
Liu, Zhuangjian
Huang, Yonggang Y
Hwang, Keh-Chih
Zhang, Yong-wei
Rogers, John A
description Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.
doi_str_mv 10.1073/pnas.0807476105
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1875540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465525</jstor_id><sourcerecordid>25465525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</originalsourceid><addsrcrecordid>eNqFkb2PEzEQxVcIxB0HNRVg0VHkbry217sNEjrxJR2igKutie1NHG3sxXb4qPjXmSjRBSqqKeY3b97Ta5qnHC45aHE1RyyX0IOWuuOg7jXnHAa-6OQA95tzgFYvetnKs-ZRKRsAGFQPD5szPgBXqu3Pm9-fsPoccCoMo2MxRZvmCSNmtvVlzZwvYRULG1NmIVa_ysQ7ZkO2u1AL-xHqmk0hejrwE5YaLMu-zCkWX1hNzP-s2W89qdk1xmBxIk1S22INBD1uHoz03D85zovm9t3br9cfFjef33-8fnOzsEpBXeASkDvltOgUQussZVmKJS61HoS16JxXopXS9jBI5wQo4SQojda36EcUF83rg-68W269sz7WjJOZc9hi_mUSBvPvJoa1WaXvplW95FKRwMuDQKKMpthQKZBNMXpbDe-1UhJO0JzTt50v1WzSLkcKZlrgQg9ctgRdHSCbUynZj3cuOJh9q2bfqjm1ShfP_zZ_4o81EvDqCOwvT3LKyJ7MdVqZcTdNlcoglv2HJeTZAdmUmvId0yrZ0bv9_sVhP2IyuMqhmNsv-4Bkp9Nc9OIPu-rNjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201379142</pqid></control><display><type>article</type><title>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kim, Dae-Hyeong ; Song, Jizhou ; Choi, Won Mook ; Kim, Hoon-Sik ; Kim, Rak-Hwan ; Liu, Zhuangjian ; Huang, Yonggang Y ; Hwang, Keh-Chih ; Zhang, Yong-wei ; Rogers, John A</creator><creatorcontrib>Kim, Dae-Hyeong ; Song, Jizhou ; Choi, Won Mook ; Kim, Hoon-Sik ; Kim, Rak-Hwan ; Liu, Zhuangjian ; Huang, Yonggang Y ; Hwang, Keh-Chih ; Zhang, Yong-wei ; Rogers, John A ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0807476105</identifier><identifier>PMID: 19015528</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>buckling mechanics ; CMOS ; Deformation ; Design ; Elasticity ; Electronics ; Electronics - instrumentation ; Equipment Design ; flexible electronics ; Fracture mechanics ; Humans ; Integrated circuits ; Inverters ; Materials elasticity ; MATERIALS SCIENCE ; Materials Testing ; Metal bridges ; Nanostructures ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Physical Sciences ; plastic electronics ; semiconductor nanomaterials ; Semiconductor wafers ; Silicon ; Stress, Mechanical ; stretchable electronics ; Tensile Strength ; Transistors, Electronic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (48), p.18675-18680</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 2, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</citedby><cites>FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465525$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465525$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1875540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Song, Jizhou</creatorcontrib><creatorcontrib>Choi, Won Mook</creatorcontrib><creatorcontrib>Kim, Hoon-Sik</creatorcontrib><creatorcontrib>Kim, Rak-Hwan</creatorcontrib><creatorcontrib>Liu, Zhuangjian</creatorcontrib><creatorcontrib>Huang, Yonggang Y</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Zhang, Yong-wei</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.</description><subject>buckling mechanics</subject><subject>CMOS</subject><subject>Deformation</subject><subject>Design</subject><subject>Elasticity</subject><subject>Electronics</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>flexible electronics</subject><subject>Fracture mechanics</subject><subject>Humans</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Materials elasticity</subject><subject>MATERIALS SCIENCE</subject><subject>Materials Testing</subject><subject>Metal bridges</subject><subject>Nanostructures</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Physical Sciences</subject><subject>plastic electronics</subject><subject>semiconductor nanomaterials</subject><subject>Semiconductor wafers</subject><subject>Silicon</subject><subject>Stress, Mechanical</subject><subject>stretchable electronics</subject><subject>Tensile Strength</subject><subject>Transistors, Electronic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkb2PEzEQxVcIxB0HNRVg0VHkbry217sNEjrxJR2igKutie1NHG3sxXb4qPjXmSjRBSqqKeY3b97Ta5qnHC45aHE1RyyX0IOWuuOg7jXnHAa-6OQA95tzgFYvetnKs-ZRKRsAGFQPD5szPgBXqu3Pm9-fsPoccCoMo2MxRZvmCSNmtvVlzZwvYRULG1NmIVa_ysQ7ZkO2u1AL-xHqmk0hejrwE5YaLMu-zCkWX1hNzP-s2W89qdk1xmBxIk1S22INBD1uHoz03D85zovm9t3br9cfFjef33-8fnOzsEpBXeASkDvltOgUQussZVmKJS61HoS16JxXopXS9jBI5wQo4SQojda36EcUF83rg-68W269sz7WjJOZc9hi_mUSBvPvJoa1WaXvplW95FKRwMuDQKKMpthQKZBNMXpbDe-1UhJO0JzTt50v1WzSLkcKZlrgQg9ctgRdHSCbUynZj3cuOJh9q2bfqjm1ShfP_zZ_4o81EvDqCOwvT3LKyJ7MdVqZcTdNlcoglv2HJeTZAdmUmvId0yrZ0bv9_sVhP2IyuMqhmNsv-4Bkp9Nc9OIPu-rNjg</recordid><startdate>20081202</startdate><enddate>20081202</enddate><creator>Kim, Dae-Hyeong</creator><creator>Song, Jizhou</creator><creator>Choi, Won Mook</creator><creator>Kim, Hoon-Sik</creator><creator>Kim, Rak-Hwan</creator><creator>Liu, Zhuangjian</creator><creator>Huang, Yonggang Y</creator><creator>Hwang, Keh-Chih</creator><creator>Zhang, Yong-wei</creator><creator>Rogers, John A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20081202</creationdate><title>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</title><author>Kim, Dae-Hyeong ; Song, Jizhou ; Choi, Won Mook ; Kim, Hoon-Sik ; Kim, Rak-Hwan ; Liu, Zhuangjian ; Huang, Yonggang Y ; Hwang, Keh-Chih ; Zhang, Yong-wei ; Rogers, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>buckling mechanics</topic><topic>CMOS</topic><topic>Deformation</topic><topic>Design</topic><topic>Elasticity</topic><topic>Electronics</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>flexible electronics</topic><topic>Fracture mechanics</topic><topic>Humans</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Materials elasticity</topic><topic>MATERIALS SCIENCE</topic><topic>Materials Testing</topic><topic>Metal bridges</topic><topic>Nanostructures</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Physical Sciences</topic><topic>plastic electronics</topic><topic>semiconductor nanomaterials</topic><topic>Semiconductor wafers</topic><topic>Silicon</topic><topic>Stress, Mechanical</topic><topic>stretchable electronics</topic><topic>Tensile Strength</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Song, Jizhou</creatorcontrib><creatorcontrib>Choi, Won Mook</creatorcontrib><creatorcontrib>Kim, Hoon-Sik</creatorcontrib><creatorcontrib>Kim, Rak-Hwan</creatorcontrib><creatorcontrib>Liu, Zhuangjian</creatorcontrib><creatorcontrib>Huang, Yonggang Y</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Zhang, Yong-wei</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dae-Hyeong</au><au>Song, Jizhou</au><au>Choi, Won Mook</au><au>Kim, Hoon-Sik</au><au>Kim, Rak-Hwan</au><au>Liu, Zhuangjian</au><au>Huang, Yonggang Y</au><au>Hwang, Keh-Chih</au><au>Zhang, Yong-wei</au><au>Rogers, John A</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-02</date><risdate>2008</risdate><volume>105</volume><issue>48</issue><spage>18675</spage><epage>18680</epage><pages>18675-18680</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19015528</pmid><doi>10.1073/pnas.0807476105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (48), p.18675-18680
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_1875540
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects buckling mechanics
CMOS
Deformation
Design
Elasticity
Electronics
Electronics - instrumentation
Equipment Design
flexible electronics
Fracture mechanics
Humans
Integrated circuits
Inverters
Materials elasticity
MATERIALS SCIENCE
Materials Testing
Metal bridges
Nanostructures
Nanotechnology - instrumentation
Nanotechnology - methods
Physical Sciences
plastic electronics
semiconductor nanomaterials
Semiconductor wafers
Silicon
Stress, Mechanical
stretchable electronics
Tensile Strength
Transistors, Electronic
title Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20and%20noncoplanar%20mesh%20designs%20for%20integrated%20circuits%20with%20linear%20elastic%20responses%20to%20extreme%20mechanical%20deformations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Dae-Hyeong&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2008-12-02&rft.volume=105&rft.issue=48&rft.spage=18675&rft.epage=18680&rft.pages=18675-18680&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0807476105&rft_dat=%3Cjstor_osti_%3E25465525%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201379142&rft_id=info:pmid/19015528&rft_jstor_id=25465525&rfr_iscdi=true