Loading…
Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those t...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (48), p.18675-18680 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3 |
container_end_page | 18680 |
container_issue | 48 |
container_start_page | 18675 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Kim, Dae-Hyeong Song, Jizhou Choi, Won Mook Kim, Hoon-Sik Kim, Rak-Hwan Liu, Zhuangjian Huang, Yonggang Y Hwang, Keh-Chih Zhang, Yong-wei Rogers, John A |
description | Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics. |
doi_str_mv | 10.1073/pnas.0807476105 |
format | article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1875540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465525</jstor_id><sourcerecordid>25465525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</originalsourceid><addsrcrecordid>eNqFkb2PEzEQxVcIxB0HNRVg0VHkbry217sNEjrxJR2igKutie1NHG3sxXb4qPjXmSjRBSqqKeY3b97Ta5qnHC45aHE1RyyX0IOWuuOg7jXnHAa-6OQA95tzgFYvetnKs-ZRKRsAGFQPD5szPgBXqu3Pm9-fsPoccCoMo2MxRZvmCSNmtvVlzZwvYRULG1NmIVa_ysQ7ZkO2u1AL-xHqmk0hejrwE5YaLMu-zCkWX1hNzP-s2W89qdk1xmBxIk1S22INBD1uHoz03D85zovm9t3br9cfFjef33-8fnOzsEpBXeASkDvltOgUQussZVmKJS61HoS16JxXopXS9jBI5wQo4SQojda36EcUF83rg-68W269sz7WjJOZc9hi_mUSBvPvJoa1WaXvplW95FKRwMuDQKKMpthQKZBNMXpbDe-1UhJO0JzTt50v1WzSLkcKZlrgQg9ctgRdHSCbUynZj3cuOJh9q2bfqjm1ShfP_zZ_4o81EvDqCOwvT3LKyJ7MdVqZcTdNlcoglv2HJeTZAdmUmvId0yrZ0bv9_sVhP2IyuMqhmNsv-4Bkp9Nc9OIPu-rNjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201379142</pqid></control><display><type>article</type><title>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kim, Dae-Hyeong ; Song, Jizhou ; Choi, Won Mook ; Kim, Hoon-Sik ; Kim, Rak-Hwan ; Liu, Zhuangjian ; Huang, Yonggang Y ; Hwang, Keh-Chih ; Zhang, Yong-wei ; Rogers, John A</creator><creatorcontrib>Kim, Dae-Hyeong ; Song, Jizhou ; Choi, Won Mook ; Kim, Hoon-Sik ; Kim, Rak-Hwan ; Liu, Zhuangjian ; Huang, Yonggang Y ; Hwang, Keh-Chih ; Zhang, Yong-wei ; Rogers, John A ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0807476105</identifier><identifier>PMID: 19015528</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>buckling mechanics ; CMOS ; Deformation ; Design ; Elasticity ; Electronics ; Electronics - instrumentation ; Equipment Design ; flexible electronics ; Fracture mechanics ; Humans ; Integrated circuits ; Inverters ; Materials elasticity ; MATERIALS SCIENCE ; Materials Testing ; Metal bridges ; Nanostructures ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Physical Sciences ; plastic electronics ; semiconductor nanomaterials ; Semiconductor wafers ; Silicon ; Stress, Mechanical ; stretchable electronics ; Tensile Strength ; Transistors, Electronic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (48), p.18675-18680</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 2, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</citedby><cites>FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465525$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465525$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1875540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Song, Jizhou</creatorcontrib><creatorcontrib>Choi, Won Mook</creatorcontrib><creatorcontrib>Kim, Hoon-Sik</creatorcontrib><creatorcontrib>Kim, Rak-Hwan</creatorcontrib><creatorcontrib>Liu, Zhuangjian</creatorcontrib><creatorcontrib>Huang, Yonggang Y</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Zhang, Yong-wei</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.</description><subject>buckling mechanics</subject><subject>CMOS</subject><subject>Deformation</subject><subject>Design</subject><subject>Elasticity</subject><subject>Electronics</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>flexible electronics</subject><subject>Fracture mechanics</subject><subject>Humans</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Materials elasticity</subject><subject>MATERIALS SCIENCE</subject><subject>Materials Testing</subject><subject>Metal bridges</subject><subject>Nanostructures</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Physical Sciences</subject><subject>plastic electronics</subject><subject>semiconductor nanomaterials</subject><subject>Semiconductor wafers</subject><subject>Silicon</subject><subject>Stress, Mechanical</subject><subject>stretchable electronics</subject><subject>Tensile Strength</subject><subject>Transistors, Electronic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkb2PEzEQxVcIxB0HNRVg0VHkbry217sNEjrxJR2igKutie1NHG3sxXb4qPjXmSjRBSqqKeY3b97Ta5qnHC45aHE1RyyX0IOWuuOg7jXnHAa-6OQA95tzgFYvetnKs-ZRKRsAGFQPD5szPgBXqu3Pm9-fsPoccCoMo2MxRZvmCSNmtvVlzZwvYRULG1NmIVa_ysQ7ZkO2u1AL-xHqmk0hejrwE5YaLMu-zCkWX1hNzP-s2W89qdk1xmBxIk1S22INBD1uHoz03D85zovm9t3br9cfFjef33-8fnOzsEpBXeASkDvltOgUQussZVmKJS61HoS16JxXopXS9jBI5wQo4SQojda36EcUF83rg-68W269sz7WjJOZc9hi_mUSBvPvJoa1WaXvplW95FKRwMuDQKKMpthQKZBNMXpbDe-1UhJO0JzTt50v1WzSLkcKZlrgQg9ctgRdHSCbUynZj3cuOJh9q2bfqjm1ShfP_zZ_4o81EvDqCOwvT3LKyJ7MdVqZcTdNlcoglv2HJeTZAdmUmvId0yrZ0bv9_sVhP2IyuMqhmNsv-4Bkp9Nc9OIPu-rNjg</recordid><startdate>20081202</startdate><enddate>20081202</enddate><creator>Kim, Dae-Hyeong</creator><creator>Song, Jizhou</creator><creator>Choi, Won Mook</creator><creator>Kim, Hoon-Sik</creator><creator>Kim, Rak-Hwan</creator><creator>Liu, Zhuangjian</creator><creator>Huang, Yonggang Y</creator><creator>Hwang, Keh-Chih</creator><creator>Zhang, Yong-wei</creator><creator>Rogers, John A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20081202</creationdate><title>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</title><author>Kim, Dae-Hyeong ; Song, Jizhou ; Choi, Won Mook ; Kim, Hoon-Sik ; Kim, Rak-Hwan ; Liu, Zhuangjian ; Huang, Yonggang Y ; Hwang, Keh-Chih ; Zhang, Yong-wei ; Rogers, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>buckling mechanics</topic><topic>CMOS</topic><topic>Deformation</topic><topic>Design</topic><topic>Elasticity</topic><topic>Electronics</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>flexible electronics</topic><topic>Fracture mechanics</topic><topic>Humans</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Materials elasticity</topic><topic>MATERIALS SCIENCE</topic><topic>Materials Testing</topic><topic>Metal bridges</topic><topic>Nanostructures</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Physical Sciences</topic><topic>plastic electronics</topic><topic>semiconductor nanomaterials</topic><topic>Semiconductor wafers</topic><topic>Silicon</topic><topic>Stress, Mechanical</topic><topic>stretchable electronics</topic><topic>Tensile Strength</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Song, Jizhou</creatorcontrib><creatorcontrib>Choi, Won Mook</creatorcontrib><creatorcontrib>Kim, Hoon-Sik</creatorcontrib><creatorcontrib>Kim, Rak-Hwan</creatorcontrib><creatorcontrib>Liu, Zhuangjian</creatorcontrib><creatorcontrib>Huang, Yonggang Y</creatorcontrib><creatorcontrib>Hwang, Keh-Chih</creatorcontrib><creatorcontrib>Zhang, Yong-wei</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dae-Hyeong</au><au>Song, Jizhou</au><au>Choi, Won Mook</au><au>Kim, Hoon-Sik</au><au>Kim, Rak-Hwan</au><au>Liu, Zhuangjian</au><au>Huang, Yonggang Y</au><au>Hwang, Keh-Chih</au><au>Zhang, Yong-wei</au><au>Rogers, John A</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-02</date><risdate>2008</risdate><volume>105</volume><issue>48</issue><spage>18675</spage><epage>18680</epage><pages>18675-18680</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in [almost equal to]1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to [almost equal to]140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19015528</pmid><doi>10.1073/pnas.0807476105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (48), p.18675-18680 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_osti_scitechconnect_1875540 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | buckling mechanics CMOS Deformation Design Elasticity Electronics Electronics - instrumentation Equipment Design flexible electronics Fracture mechanics Humans Integrated circuits Inverters Materials elasticity MATERIALS SCIENCE Materials Testing Metal bridges Nanostructures Nanotechnology - instrumentation Nanotechnology - methods Physical Sciences plastic electronics semiconductor nanomaterials Semiconductor wafers Silicon Stress, Mechanical stretchable electronics Tensile Strength Transistors, Electronic |
title | Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20and%20noncoplanar%20mesh%20designs%20for%20integrated%20circuits%20with%20linear%20elastic%20responses%20to%20extreme%20mechanical%20deformations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Dae-Hyeong&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2008-12-02&rft.volume=105&rft.issue=48&rft.spage=18675&rft.epage=18680&rft.pages=18675-18680&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0807476105&rft_dat=%3Cjstor_osti_%3E25465525%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-ab0a1d5d7365a02dc000b3bab7793ccadde53244c8094dd3053d4057ace2aefa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201379142&rft_id=info:pmid/19015528&rft_jstor_id=25465525&rfr_iscdi=true |