Loading…

Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation‐Resistant Cyclodextrin‐Based Metal–Organic Frameworks

Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2 chemisorption in...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie (International ed.) 2022-07, Vol.61 (30), p.e202206718-n/a
Main Authors: Zick, Mary E., Pugh, Suzi M., Lee, Jung‐Hoon, Forse, Alexander C., Milner, Phillip J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343
cites cdi_FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343
container_end_page n/a
container_issue 30
container_start_page e202206718
container_title Angewandte Chemie (International ed.)
container_volume 61
creator Zick, Mary E.
Pugh, Suzi M.
Lee, Jung‐Hoon
Forse, Alexander C.
Milner, Phillip J.
description Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2 chemisorption in γ‐cylodextrin‐based metal–organic frameworks (CD‐MOFs) occurs via HCO3− formation at nucleophilic OH− sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3 CD‐MOF possesses rapid and high‐capacity CO2 uptake, good thermal, oxidative, and cycling stabilities, and selective CO2 capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3 CD‐MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH− sites within a porous framework represents a potentially general strategy for the design of oxidation‐resistant adsorbents for CO2 capture. Carbon capture and sequestration is needed to fight global climate change, but current technologies are largely limited to sorbents based on oxidatively sensitive amines. Hydroxides encapsulated within cyclodextrin‐based metal–organic frameworks are demonstrated to capture CO2 via reversible bicarbonate formation, leading to a promising oxidatively stable class of materials for CO2 capture from industrial point sources.
doi_str_mv 10.1002/anie.202206718
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1876539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690980943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0Eou3AliWy6DqDL7nYyxJaWql0JC5ry7FPqEsmHmxH7azoIyDxhn0SPEpbll3Z1vn86ZzzI_SGkiUlhL3Xo4MlI4yRuqHiGdqnFaMFbxr-PN9LzotGVHQPHcR4lXkhSP0S7fGqaqQkYh_9bnXo_Ig_On_jLOBWb9IUAOuELyYzgN9cusEZfLq1YSa-ugQRuxGv8lMn58e72z9fILqY9JhwuzWDt3CTgtsVPugIFn-GpIe727-r8CM3bPBJ0Gu49uFnfIVe9HqI8Pr-XKDvJ8ff2tPifPXprD06L0xZElHQvjfcAq2aurNWSsY6LrmpheW6K8HU0GlSka4jlpG-0Q1waoBpKLWtDS_5Ar2bvT4mp6LJQ5hL48cRTFJUNHWVfQt0OEOb4H9NEJO68lMYc1-K1ZJIQWTe6AItZ8oEH2OAXm2CW-uwVZSoXShqF4p6DCV_eHuvnbo12Ef8IYUMyBm4dgNsn9Cpo4uz4__yf4Aenis</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690980943</pqid></control><display><type>article</type><title>Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation‐Resistant Cyclodextrin‐Based Metal–Organic Frameworks</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zick, Mary E. ; Pugh, Suzi M. ; Lee, Jung‐Hoon ; Forse, Alexander C. ; Milner, Phillip J.</creator><creatorcontrib>Zick, Mary E. ; Pugh, Suzi M. ; Lee, Jung‐Hoon ; Forse, Alexander C. ; Milner, Phillip J.</creatorcontrib><description>Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2 chemisorption in γ‐cylodextrin‐based metal–organic frameworks (CD‐MOFs) occurs via HCO3− formation at nucleophilic OH− sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3 CD‐MOF possesses rapid and high‐capacity CO2 uptake, good thermal, oxidative, and cycling stabilities, and selective CO2 capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3 CD‐MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH− sites within a porous framework represents a potentially general strategy for the design of oxidation‐resistant adsorbents for CO2 capture. Carbon capture and sequestration is needed to fight global climate change, but current technologies are largely limited to sorbents based on oxidatively sensitive amines. Hydroxides encapsulated within cyclodextrin‐based metal–organic frameworks are demonstrated to capture CO2 via reversible bicarbonate formation, leading to a promising oxidatively stable class of materials for CO2 capture from industrial point sources.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202206718</identifier><identifier>PMID: 35579908</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Cadmium ; Carbon dioxide ; Carbon sequestration ; Carbon Storage ; Chemisorption ; Climate change ; Cyclodextrin ; Cyclodextrins ; Hydrogen Bonds ; Metal-organic frameworks ; NMR Spectroscopy ; Oxidation ; Oxidation resistance ; Sorbents</subject><ispartof>Angewandte Chemie (International ed.), 2022-07, Vol.61 (30), p.e202206718-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343</citedby><cites>FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343</cites><orcidid>0000-0001-9592-9821 ; 0000-0002-2618-013X ; 0000-0002-3819-5347 ; 0000000238195347 ; 000000022618013X ; 0000000195929821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35579908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1876539$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zick, Mary E.</creatorcontrib><creatorcontrib>Pugh, Suzi M.</creatorcontrib><creatorcontrib>Lee, Jung‐Hoon</creatorcontrib><creatorcontrib>Forse, Alexander C.</creatorcontrib><creatorcontrib>Milner, Phillip J.</creatorcontrib><title>Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation‐Resistant Cyclodextrin‐Based Metal–Organic Frameworks</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2 chemisorption in γ‐cylodextrin‐based metal–organic frameworks (CD‐MOFs) occurs via HCO3− formation at nucleophilic OH− sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3 CD‐MOF possesses rapid and high‐capacity CO2 uptake, good thermal, oxidative, and cycling stabilities, and selective CO2 capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3 CD‐MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH− sites within a porous framework represents a potentially general strategy for the design of oxidation‐resistant adsorbents for CO2 capture. Carbon capture and sequestration is needed to fight global climate change, but current technologies are largely limited to sorbents based on oxidatively sensitive amines. Hydroxides encapsulated within cyclodextrin‐based metal–organic frameworks are demonstrated to capture CO2 via reversible bicarbonate formation, leading to a promising oxidatively stable class of materials for CO2 capture from industrial point sources.</description><subject>Adsorption</subject><subject>Cadmium</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon Storage</subject><subject>Chemisorption</subject><subject>Climate change</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Hydrogen Bonds</subject><subject>Metal-organic frameworks</subject><subject>NMR Spectroscopy</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Sorbents</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhi0Eou3AliWy6DqDL7nYyxJaWql0JC5ry7FPqEsmHmxH7azoIyDxhn0SPEpbll3Z1vn86ZzzI_SGkiUlhL3Xo4MlI4yRuqHiGdqnFaMFbxr-PN9LzotGVHQPHcR4lXkhSP0S7fGqaqQkYh_9bnXo_Ig_On_jLOBWb9IUAOuELyYzgN9cusEZfLq1YSa-ugQRuxGv8lMn58e72z9fILqY9JhwuzWDt3CTgtsVPugIFn-GpIe727-r8CM3bPBJ0Gu49uFnfIVe9HqI8Pr-XKDvJ8ff2tPifPXprD06L0xZElHQvjfcAq2aurNWSsY6LrmpheW6K8HU0GlSka4jlpG-0Q1waoBpKLWtDS_5Ar2bvT4mp6LJQ5hL48cRTFJUNHWVfQt0OEOb4H9NEJO68lMYc1-K1ZJIQWTe6AItZ8oEH2OAXm2CW-uwVZSoXShqF4p6DCV_eHuvnbo12Ef8IYUMyBm4dgNsn9Cpo4uz4__yf4Aenis</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Zick, Mary E.</creator><creator>Pugh, Suzi M.</creator><creator>Lee, Jung‐Hoon</creator><creator>Forse, Alexander C.</creator><creator>Milner, Phillip J.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9592-9821</orcidid><orcidid>https://orcid.org/0000-0002-2618-013X</orcidid><orcidid>https://orcid.org/0000-0002-3819-5347</orcidid><orcidid>https://orcid.org/0000000238195347</orcidid><orcidid>https://orcid.org/000000022618013X</orcidid><orcidid>https://orcid.org/0000000195929821</orcidid></search><sort><creationdate>20220725</creationdate><title>Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation‐Resistant Cyclodextrin‐Based Metal–Organic Frameworks</title><author>Zick, Mary E. ; Pugh, Suzi M. ; Lee, Jung‐Hoon ; Forse, Alexander C. ; Milner, Phillip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Cadmium</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon Storage</topic><topic>Chemisorption</topic><topic>Climate change</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Hydrogen Bonds</topic><topic>Metal-organic frameworks</topic><topic>NMR Spectroscopy</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Sorbents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zick, Mary E.</creatorcontrib><creatorcontrib>Pugh, Suzi M.</creatorcontrib><creatorcontrib>Lee, Jung‐Hoon</creatorcontrib><creatorcontrib>Forse, Alexander C.</creatorcontrib><creatorcontrib>Milner, Phillip J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zick, Mary E.</au><au>Pugh, Suzi M.</au><au>Lee, Jung‐Hoon</au><au>Forse, Alexander C.</au><au>Milner, Phillip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation‐Resistant Cyclodextrin‐Based Metal–Organic Frameworks</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-07-25</date><risdate>2022</risdate><volume>61</volume><issue>30</issue><spage>e202206718</spage><epage>n/a</epage><pages>e202206718-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2 chemisorption in γ‐cylodextrin‐based metal–organic frameworks (CD‐MOFs) occurs via HCO3− formation at nucleophilic OH− sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3 CD‐MOF possesses rapid and high‐capacity CO2 uptake, good thermal, oxidative, and cycling stabilities, and selective CO2 capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3 CD‐MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH− sites within a porous framework represents a potentially general strategy for the design of oxidation‐resistant adsorbents for CO2 capture. Carbon capture and sequestration is needed to fight global climate change, but current technologies are largely limited to sorbents based on oxidatively sensitive amines. Hydroxides encapsulated within cyclodextrin‐based metal–organic frameworks are demonstrated to capture CO2 via reversible bicarbonate formation, leading to a promising oxidatively stable class of materials for CO2 capture from industrial point sources.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35579908</pmid><doi>10.1002/anie.202206718</doi><tpages>14</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9592-9821</orcidid><orcidid>https://orcid.org/0000-0002-2618-013X</orcidid><orcidid>https://orcid.org/0000-0002-3819-5347</orcidid><orcidid>https://orcid.org/0000000238195347</orcidid><orcidid>https://orcid.org/000000022618013X</orcidid><orcidid>https://orcid.org/0000000195929821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2022-07, Vol.61 (30), p.e202206718-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1876539
source Wiley-Blackwell Read & Publish Collection
subjects Adsorption
Cadmium
Carbon dioxide
Carbon sequestration
Carbon Storage
Chemisorption
Climate change
Cyclodextrin
Cyclodextrins
Hydrogen Bonds
Metal-organic frameworks
NMR Spectroscopy
Oxidation
Oxidation resistance
Sorbents
title Carbon Dioxide Capture at Nucleophilic Hydroxide Sites in Oxidation‐Resistant Cyclodextrin‐Based Metal–Organic Frameworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Dioxide%20Capture%20at%20Nucleophilic%20Hydroxide%20Sites%20in%20Oxidation%E2%80%90Resistant%20Cyclodextrin%E2%80%90Based%20Metal%E2%80%93Organic%20Frameworks&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Zick,%20Mary%20E.&rft.date=2022-07-25&rft.volume=61&rft.issue=30&rft.spage=e202206718&rft.epage=n/a&rft.pages=e202206718-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202206718&rft_dat=%3Cproquest_osti_%3E2690980943%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4408-1ffc3de1576bdd9922b393c68d3ab4ec6eba050bb0d20f7a7e31ce2ae4ad6c343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2690980943&rft_id=info:pmid/35579908&rfr_iscdi=true