Loading…

High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy

The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated vi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-08, Vol.34 (34), p.e2203038-n/a
Main Authors: Zheng, Dongxing, Lan, Jin, Fang, Bin, Li, Yan, Liu, Chen, Ledesma‐Martin, J. Omar, Wen, Yan, Li, Peng, Zhang, Chenhui, Ma, Yinchang, Qiu, Ziqiang, Liu, Kai, Manchon, Aurélien, Zhang, Xixiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3
cites cdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3
container_end_page n/a
container_issue 34
container_start_page e2203038
container_title Advanced materials (Weinheim)
container_volume 34
creator Zheng, Dongxing
Lan, Jin
Fang, Bin
Li, Yan
Liu, Chen
Ledesma‐Martin, J. Omar
Wen, Yan
Li, Peng
Zhang, Chenhui
Ma, Yinchang
Qiu, Ziqiang
Liu, Kai
Manchon, Aurélien
Zhang, Xixiang
description The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current. The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.
doi_str_mv 10.1002/adma.202203038
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1877449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705966266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</originalsourceid><addsrcrecordid>eNqF0c2O0zAQB_AIgURZuHKO4MIeUvwVxz5Gy0KRWi0ScLZcZ9J4ldrFdtgtJ8QT8Iw8CS6BReLCydLoN6Px_IviKUZLjBB5qbu9XhJECKKIinvFAtcEVwzJ-n6xQJLWleRMPCwexXiNEJIc8UXxbWV3w4-v3y_73hoLzhzLjd4573JtA53VCbpfFUj2i07Wu_L9jU1msG5XWle245jl1a3toFxBguBjCpNJU4BYZjiU7yAcwHXWTKMOf0aZsnU2-hT84fi4eNDrMcKT3-9Z8fH15YeLVbW-evP2ol1XhtVYVLRBW6qp1kwTVpsOUc2FgC3iAjW17KFhvOFaYMml6SUFiWlvaml017OebelZ8Wyem1e0KhqbwAzGOwcmKSyahjGZ0fmMBj2qQ7B7HY7Ka6tW7Vqdavm0FDek_oyzfTHbQ_CfJohJ7W00MI7agZ-iIlywnAxiJNPn_9BrPwWXv6tIg2rJOeE8q-WsTD5jDNDfbYCROmWsThmru4xzg5wbbuwIx_9o1b7atH97fwIFYa4f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705966266</pqid></control><display><type>article</type><title>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</title><source>Wiley</source><creator>Zheng, Dongxing ; Lan, Jin ; Fang, Bin ; Li, Yan ; Liu, Chen ; Ledesma‐Martin, J. Omar ; Wen, Yan ; Li, Peng ; Zhang, Chenhui ; Ma, Yinchang ; Qiu, Ziqiang ; Liu, Kai ; Manchon, Aurélien ; Zhang, Xixiang</creator><creatorcontrib>Zheng, Dongxing ; Lan, Jin ; Fang, Bin ; Li, Yan ; Liu, Chen ; Ledesma‐Martin, J. Omar ; Wen, Yan ; Li, Peng ; Zhang, Chenhui ; Ma, Yinchang ; Qiu, Ziqiang ; Liu, Kai ; Manchon, Aurélien ; Zhang, Xixiang</creatorcontrib><description>The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current. The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202203038</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiferromagnetism ; Condensed Matter ; Electron spin ; Electrons ; Energy dissipation ; Epitaxial growth ; Ferromagnetism ; Heterostructures ; Magnetic anisotropy ; Magnetic moments ; Magnetic switching ; Magnetism ; Magnetization ; magnetization switching ; Magnons ; Materials Science ; Metal oxides ; Nickel oxides ; oxide heterostructures ; perpendicular magnetic anisotropy ; Physics ; Spin-orbit interactions ; Substrates ; Threshold currents ; Torque ; Transition metal oxides</subject><ispartof>Advanced materials (Weinheim), 2022-08, Vol.34 (34), p.e2203038-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</citedby><cites>FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</cites><orcidid>0000-0002-3478-6414 ; 0000-0002-4768-293X ; 0000-0001-8487-9515 ; 0000000234786414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03831725$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1877449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Dongxing</creatorcontrib><creatorcontrib>Lan, Jin</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ledesma‐Martin, J. Omar</creatorcontrib><creatorcontrib>Wen, Yan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Chenhui</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Qiu, Ziqiang</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Manchon, Aurélien</creatorcontrib><creatorcontrib>Zhang, Xixiang</creatorcontrib><title>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</title><title>Advanced materials (Weinheim)</title><description>The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current. The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.</description><subject>Antiferromagnetism</subject><subject>Condensed Matter</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Epitaxial growth</subject><subject>Ferromagnetism</subject><subject>Heterostructures</subject><subject>Magnetic anisotropy</subject><subject>Magnetic moments</subject><subject>Magnetic switching</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>magnetization switching</subject><subject>Magnons</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Nickel oxides</subject><subject>oxide heterostructures</subject><subject>perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Spin-orbit interactions</subject><subject>Substrates</subject><subject>Threshold currents</subject><subject>Torque</subject><subject>Transition metal oxides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0c2O0zAQB_AIgURZuHKO4MIeUvwVxz5Gy0KRWi0ScLZcZ9J4ldrFdtgtJ8QT8Iw8CS6BReLCydLoN6Px_IviKUZLjBB5qbu9XhJECKKIinvFAtcEVwzJ-n6xQJLWleRMPCwexXiNEJIc8UXxbWV3w4-v3y_73hoLzhzLjd4573JtA53VCbpfFUj2i07Wu_L9jU1msG5XWle245jl1a3toFxBguBjCpNJU4BYZjiU7yAcwHXWTKMOf0aZsnU2-hT84fi4eNDrMcKT3-9Z8fH15YeLVbW-evP2ol1XhtVYVLRBW6qp1kwTVpsOUc2FgC3iAjW17KFhvOFaYMml6SUFiWlvaml017OebelZ8Wyem1e0KhqbwAzGOwcmKSyahjGZ0fmMBj2qQ7B7HY7Ka6tW7Vqdavm0FDek_oyzfTHbQ_CfJohJ7W00MI7agZ-iIlywnAxiJNPn_9BrPwWXv6tIg2rJOeE8q-WsTD5jDNDfbYCROmWsThmru4xzg5wbbuwIx_9o1b7atH97fwIFYa4f</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zheng, Dongxing</creator><creator>Lan, Jin</creator><creator>Fang, Bin</creator><creator>Li, Yan</creator><creator>Liu, Chen</creator><creator>Ledesma‐Martin, J. Omar</creator><creator>Wen, Yan</creator><creator>Li, Peng</creator><creator>Zhang, Chenhui</creator><creator>Ma, Yinchang</creator><creator>Qiu, Ziqiang</creator><creator>Liu, Kai</creator><creator>Manchon, Aurélien</creator><creator>Zhang, Xixiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid><orcidid>https://orcid.org/0000-0002-4768-293X</orcidid><orcidid>https://orcid.org/0000-0001-8487-9515</orcidid><orcidid>https://orcid.org/0000000234786414</orcidid></search><sort><creationdate>20220801</creationdate><title>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</title><author>Zheng, Dongxing ; Lan, Jin ; Fang, Bin ; Li, Yan ; Liu, Chen ; Ledesma‐Martin, J. Omar ; Wen, Yan ; Li, Peng ; Zhang, Chenhui ; Ma, Yinchang ; Qiu, Ziqiang ; Liu, Kai ; Manchon, Aurélien ; Zhang, Xixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Condensed Matter</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Epitaxial growth</topic><topic>Ferromagnetism</topic><topic>Heterostructures</topic><topic>Magnetic anisotropy</topic><topic>Magnetic moments</topic><topic>Magnetic switching</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>magnetization switching</topic><topic>Magnons</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Nickel oxides</topic><topic>oxide heterostructures</topic><topic>perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Spin-orbit interactions</topic><topic>Substrates</topic><topic>Threshold currents</topic><topic>Torque</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Dongxing</creatorcontrib><creatorcontrib>Lan, Jin</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ledesma‐Martin, J. Omar</creatorcontrib><creatorcontrib>Wen, Yan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Chenhui</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Qiu, Ziqiang</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Manchon, Aurélien</creatorcontrib><creatorcontrib>Zhang, Xixiang</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Dongxing</au><au>Lan, Jin</au><au>Fang, Bin</au><au>Li, Yan</au><au>Liu, Chen</au><au>Ledesma‐Martin, J. Omar</au><au>Wen, Yan</au><au>Li, Peng</au><au>Zhang, Chenhui</au><au>Ma, Yinchang</au><au>Qiu, Ziqiang</au><au>Liu, Kai</au><au>Manchon, Aurélien</au><au>Zhang, Xixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>34</issue><spage>e2203038</spage><epage>n/a</epage><pages>e2203038-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current. The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202203038</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid><orcidid>https://orcid.org/0000-0002-4768-293X</orcidid><orcidid>https://orcid.org/0000-0001-8487-9515</orcidid><orcidid>https://orcid.org/0000000234786414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-08, Vol.34 (34), p.e2203038-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1877449
source Wiley
subjects Antiferromagnetism
Condensed Matter
Electron spin
Electrons
Energy dissipation
Epitaxial growth
Ferromagnetism
Heterostructures
Magnetic anisotropy
Magnetic moments
Magnetic switching
Magnetism
Magnetization
magnetization switching
Magnons
Materials Science
Metal oxides
Nickel oxides
oxide heterostructures
perpendicular magnetic anisotropy
Physics
Spin-orbit interactions
Substrates
Threshold currents
Torque
Transition metal oxides
title High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency%20Magnon%E2%80%90Mediated%20Magnetization%20Switching%20in%20All%E2%80%90Oxide%20Heterostructures%20with%20Perpendicular%20Magnetic%20Anisotropy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zheng,%20Dongxing&rft.date=2022-08-01&rft.volume=34&rft.issue=34&rft.spage=e2203038&rft.epage=n/a&rft.pages=e2203038-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202203038&rft_dat=%3Cproquest_osti_%3E2705966266%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2705966266&rft_id=info:pmid/&rfr_iscdi=true