Loading…
High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy
The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated vi...
Saved in:
Published in: | Advanced materials (Weinheim) 2022-08, Vol.34 (34), p.e2203038-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3 |
container_end_page | n/a |
container_issue | 34 |
container_start_page | e2203038 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Zheng, Dongxing Lan, Jin Fang, Bin Li, Yan Liu, Chen Ledesma‐Martin, J. Omar Wen, Yan Li, Peng Zhang, Chenhui Ma, Yinchang Qiu, Ziqiang Liu, Kai Manchon, Aurélien Zhang, Xixiang |
description | The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.
The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems. |
doi_str_mv | 10.1002/adma.202203038 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1877449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705966266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</originalsourceid><addsrcrecordid>eNqF0c2O0zAQB_AIgURZuHKO4MIeUvwVxz5Gy0KRWi0ScLZcZ9J4ldrFdtgtJ8QT8Iw8CS6BReLCydLoN6Px_IviKUZLjBB5qbu9XhJECKKIinvFAtcEVwzJ-n6xQJLWleRMPCwexXiNEJIc8UXxbWV3w4-v3y_73hoLzhzLjd4573JtA53VCbpfFUj2i07Wu_L9jU1msG5XWle245jl1a3toFxBguBjCpNJU4BYZjiU7yAcwHXWTKMOf0aZsnU2-hT84fi4eNDrMcKT3-9Z8fH15YeLVbW-evP2ol1XhtVYVLRBW6qp1kwTVpsOUc2FgC3iAjW17KFhvOFaYMml6SUFiWlvaml017OebelZ8Wyem1e0KhqbwAzGOwcmKSyahjGZ0fmMBj2qQ7B7HY7Ka6tW7Vqdavm0FDek_oyzfTHbQ_CfJohJ7W00MI7agZ-iIlywnAxiJNPn_9BrPwWXv6tIg2rJOeE8q-WsTD5jDNDfbYCROmWsThmru4xzg5wbbuwIx_9o1b7atH97fwIFYa4f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705966266</pqid></control><display><type>article</type><title>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</title><source>Wiley</source><creator>Zheng, Dongxing ; Lan, Jin ; Fang, Bin ; Li, Yan ; Liu, Chen ; Ledesma‐Martin, J. Omar ; Wen, Yan ; Li, Peng ; Zhang, Chenhui ; Ma, Yinchang ; Qiu, Ziqiang ; Liu, Kai ; Manchon, Aurélien ; Zhang, Xixiang</creator><creatorcontrib>Zheng, Dongxing ; Lan, Jin ; Fang, Bin ; Li, Yan ; Liu, Chen ; Ledesma‐Martin, J. Omar ; Wen, Yan ; Li, Peng ; Zhang, Chenhui ; Ma, Yinchang ; Qiu, Ziqiang ; Liu, Kai ; Manchon, Aurélien ; Zhang, Xixiang</creatorcontrib><description>The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.
The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202203038</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiferromagnetism ; Condensed Matter ; Electron spin ; Electrons ; Energy dissipation ; Epitaxial growth ; Ferromagnetism ; Heterostructures ; Magnetic anisotropy ; Magnetic moments ; Magnetic switching ; Magnetism ; Magnetization ; magnetization switching ; Magnons ; Materials Science ; Metal oxides ; Nickel oxides ; oxide heterostructures ; perpendicular magnetic anisotropy ; Physics ; Spin-orbit interactions ; Substrates ; Threshold currents ; Torque ; Transition metal oxides</subject><ispartof>Advanced materials (Weinheim), 2022-08, Vol.34 (34), p.e2203038-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</citedby><cites>FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</cites><orcidid>0000-0002-3478-6414 ; 0000-0002-4768-293X ; 0000-0001-8487-9515 ; 0000000234786414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03831725$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1877449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Dongxing</creatorcontrib><creatorcontrib>Lan, Jin</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ledesma‐Martin, J. Omar</creatorcontrib><creatorcontrib>Wen, Yan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Chenhui</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Qiu, Ziqiang</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Manchon, Aurélien</creatorcontrib><creatorcontrib>Zhang, Xixiang</creatorcontrib><title>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</title><title>Advanced materials (Weinheim)</title><description>The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.
The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.</description><subject>Antiferromagnetism</subject><subject>Condensed Matter</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Energy dissipation</subject><subject>Epitaxial growth</subject><subject>Ferromagnetism</subject><subject>Heterostructures</subject><subject>Magnetic anisotropy</subject><subject>Magnetic moments</subject><subject>Magnetic switching</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>magnetization switching</subject><subject>Magnons</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Nickel oxides</subject><subject>oxide heterostructures</subject><subject>perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Spin-orbit interactions</subject><subject>Substrates</subject><subject>Threshold currents</subject><subject>Torque</subject><subject>Transition metal oxides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0c2O0zAQB_AIgURZuHKO4MIeUvwVxz5Gy0KRWi0ScLZcZ9J4ldrFdtgtJ8QT8Iw8CS6BReLCydLoN6Px_IviKUZLjBB5qbu9XhJECKKIinvFAtcEVwzJ-n6xQJLWleRMPCwexXiNEJIc8UXxbWV3w4-v3y_73hoLzhzLjd4573JtA53VCbpfFUj2i07Wu_L9jU1msG5XWle245jl1a3toFxBguBjCpNJU4BYZjiU7yAcwHXWTKMOf0aZsnU2-hT84fi4eNDrMcKT3-9Z8fH15YeLVbW-evP2ol1XhtVYVLRBW6qp1kwTVpsOUc2FgC3iAjW17KFhvOFaYMml6SUFiWlvaml017OebelZ8Wyem1e0KhqbwAzGOwcmKSyahjGZ0fmMBj2qQ7B7HY7Ka6tW7Vqdavm0FDek_oyzfTHbQ_CfJohJ7W00MI7agZ-iIlywnAxiJNPn_9BrPwWXv6tIg2rJOeE8q-WsTD5jDNDfbYCROmWsThmru4xzg5wbbuwIx_9o1b7atH97fwIFYa4f</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zheng, Dongxing</creator><creator>Lan, Jin</creator><creator>Fang, Bin</creator><creator>Li, Yan</creator><creator>Liu, Chen</creator><creator>Ledesma‐Martin, J. Omar</creator><creator>Wen, Yan</creator><creator>Li, Peng</creator><creator>Zhang, Chenhui</creator><creator>Ma, Yinchang</creator><creator>Qiu, Ziqiang</creator><creator>Liu, Kai</creator><creator>Manchon, Aurélien</creator><creator>Zhang, Xixiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid><orcidid>https://orcid.org/0000-0002-4768-293X</orcidid><orcidid>https://orcid.org/0000-0001-8487-9515</orcidid><orcidid>https://orcid.org/0000000234786414</orcidid></search><sort><creationdate>20220801</creationdate><title>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</title><author>Zheng, Dongxing ; Lan, Jin ; Fang, Bin ; Li, Yan ; Liu, Chen ; Ledesma‐Martin, J. Omar ; Wen, Yan ; Li, Peng ; Zhang, Chenhui ; Ma, Yinchang ; Qiu, Ziqiang ; Liu, Kai ; Manchon, Aurélien ; Zhang, Xixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Condensed Matter</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Energy dissipation</topic><topic>Epitaxial growth</topic><topic>Ferromagnetism</topic><topic>Heterostructures</topic><topic>Magnetic anisotropy</topic><topic>Magnetic moments</topic><topic>Magnetic switching</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>magnetization switching</topic><topic>Magnons</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Nickel oxides</topic><topic>oxide heterostructures</topic><topic>perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Spin-orbit interactions</topic><topic>Substrates</topic><topic>Threshold currents</topic><topic>Torque</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Dongxing</creatorcontrib><creatorcontrib>Lan, Jin</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Ledesma‐Martin, J. Omar</creatorcontrib><creatorcontrib>Wen, Yan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Chenhui</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Qiu, Ziqiang</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Manchon, Aurélien</creatorcontrib><creatorcontrib>Zhang, Xixiang</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Dongxing</au><au>Lan, Jin</au><au>Fang, Bin</au><au>Li, Yan</au><au>Liu, Chen</au><au>Ledesma‐Martin, J. Omar</au><au>Wen, Yan</au><au>Li, Peng</au><au>Zhang, Chenhui</au><au>Ma, Yinchang</au><au>Qiu, Ziqiang</au><au>Liu, Kai</au><au>Manchon, Aurélien</au><au>Zhang, Xixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>34</issue><spage>e2203038</spage><epage>n/a</epage><pages>e2203038-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3 are epitaxially grown on SrTiO3 single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.
The magnon current excited in an insulating antiferromagnetic layer by an electronic spin current in an epitaxial all‐oxide heterostructure is demonstrated to be effective for manipulating the perpendicular magnetization in a ferromagnetic layer. Furthermore, the critical current density to switch the magnetization is about one order of magnitude smaller than in conventional metallic systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202203038</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid><orcidid>https://orcid.org/0000-0002-4768-293X</orcidid><orcidid>https://orcid.org/0000-0001-8487-9515</orcidid><orcidid>https://orcid.org/0000000234786414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-08, Vol.34 (34), p.e2203038-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1877449 |
source | Wiley |
subjects | Antiferromagnetism Condensed Matter Electron spin Electrons Energy dissipation Epitaxial growth Ferromagnetism Heterostructures Magnetic anisotropy Magnetic moments Magnetic switching Magnetism Magnetization magnetization switching Magnons Materials Science Metal oxides Nickel oxides oxide heterostructures perpendicular magnetic anisotropy Physics Spin-orbit interactions Substrates Threshold currents Torque Transition metal oxides |
title | High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency%20Magnon%E2%80%90Mediated%20Magnetization%20Switching%20in%20All%E2%80%90Oxide%20Heterostructures%20with%20Perpendicular%20Magnetic%20Anisotropy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zheng,%20Dongxing&rft.date=2022-08-01&rft.volume=34&rft.issue=34&rft.spage=e2203038&rft.epage=n/a&rft.pages=e2203038-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202203038&rft_dat=%3Cproquest_osti_%3E2705966266%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4518-370b3a3aa4a245cd03a688eb0680759fe74676a81969cf93e913fc59cadf4f4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2705966266&rft_id=info:pmid/&rfr_iscdi=true |