Loading…
Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer
Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer...
Saved in:
Published in: | ACS energy letters 2022-01, Vol.7 (2) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | ACS energy letters |
container_volume | 7 |
creator | Lees, Eric W. Bui, Justin C. Song, Datong Weber, Adam Z. Berlinguette, Curtis P. |
description | Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1877591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877591</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18775913</originalsourceid><addsrcrecordid>eNqNi7EOgjAURRujiUT5hxd3EpAgZRUxLmwkjqaWR6iB16SvDPj1Mjg4mjucM5y7EsExlXEkkyJb__hWhMyvOI6Tk8yWBeJeWvKGpmmE2rY4gLdwwc4Qgu8Ryh5Hw97NoKiFWjFD4xRxhw4MgYKz0co9LSmPUA2ovbPD_Ea3F5tODYzhlztxuFZNeYsse_NgbTzqXlui5fJIZJ5nRZL-FX0AN9hDLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lees, Eric W. ; Bui, Justin C. ; Song, Datong ; Weber, Adam Z. ; Berlinguette, Curtis P.</creator><creatorcontrib>Lees, Eric W. ; Bui, Justin C. ; Song, Datong ; Weber, Adam Z. ; Berlinguette, Curtis P. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>ACS energy letters, 2022-01, Vol.7 (2)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000016875849X ; 0000000277491624 ; 000000034525957X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877591$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lees, Eric W.</creatorcontrib><creatorcontrib>Bui, Justin C.</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Berlinguette, Curtis P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</title><title>ACS energy letters</title><description>Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNi7EOgjAURRujiUT5hxd3EpAgZRUxLmwkjqaWR6iB16SvDPj1Mjg4mjucM5y7EsExlXEkkyJb__hWhMyvOI6Tk8yWBeJeWvKGpmmE2rY4gLdwwc4Qgu8Ryh5Hw97NoKiFWjFD4xRxhw4MgYKz0co9LSmPUA2ovbPD_Ea3F5tODYzhlztxuFZNeYsse_NgbTzqXlui5fJIZJ5nRZL-FX0AN9hDLA</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Lees, Eric W.</creator><creator>Bui, Justin C.</creator><creator>Song, Datong</creator><creator>Weber, Adam Z.</creator><creator>Berlinguette, Curtis P.</creator><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000016875849X</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/000000034525957X</orcidid></search><sort><creationdate>20220125</creationdate><title>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</title><author>Lees, Eric W. ; Bui, Justin C. ; Song, Datong ; Weber, Adam Z. ; Berlinguette, Curtis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18775913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>online_resources</toplevel><creatorcontrib>Lees, Eric W.</creatorcontrib><creatorcontrib>Bui, Justin C.</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Berlinguette, Curtis P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lees, Eric W.</au><au>Bui, Justin C.</au><au>Song, Datong</au><au>Weber, Adam Z.</au><au>Berlinguette, Curtis P.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</atitle><jtitle>ACS energy letters</jtitle><date>2022-01-25</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><orcidid>https://orcid.org/000000016875849X</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/000000034525957X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2022-01, Vol.7 (2) |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1877591 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuum%20Model%20to%20Define%20the%20Chemistry%20and%20Mass%20Transfer%20in%20a%20Bicarbonate%20Electrolyzer&rft.jtitle=ACS%20energy%20letters&rft.au=Lees,%20Eric%20W.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-01-25&rft.volume=7&rft.issue=2&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/&rft_dat=%3Costi%3E1877591%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18775913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |