Loading…

Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer

Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2022-01, Vol.7 (2)
Main Authors: Lees, Eric W., Bui, Justin C., Song, Datong, Weber, Adam Z., Berlinguette, Curtis P.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page
container_title ACS energy letters
container_volume 7
creator Lees, Eric W.
Bui, Justin C.
Song, Datong
Weber, Adam Z.
Berlinguette, Curtis P.
description Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1877591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877591</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18775913</originalsourceid><addsrcrecordid>eNqNi7EOgjAURRujiUT5hxd3EpAgZRUxLmwkjqaWR6iB16SvDPj1Mjg4mjucM5y7EsExlXEkkyJb__hWhMyvOI6Tk8yWBeJeWvKGpmmE2rY4gLdwwc4Qgu8Ryh5Hw97NoKiFWjFD4xRxhw4MgYKz0co9LSmPUA2ovbPD_Ea3F5tODYzhlztxuFZNeYsse_NgbTzqXlui5fJIZJ5nRZL-FX0AN9hDLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lees, Eric W. ; Bui, Justin C. ; Song, Datong ; Weber, Adam Z. ; Berlinguette, Curtis P.</creator><creatorcontrib>Lees, Eric W. ; Bui, Justin C. ; Song, Datong ; Weber, Adam Z. ; Berlinguette, Curtis P. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>ACS energy letters, 2022-01, Vol.7 (2)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000016875849X ; 0000000277491624 ; 000000034525957X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877591$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lees, Eric W.</creatorcontrib><creatorcontrib>Bui, Justin C.</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Berlinguette, Curtis P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</title><title>ACS energy letters</title><description>Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNi7EOgjAURRujiUT5hxd3EpAgZRUxLmwkjqaWR6iB16SvDPj1Mjg4mjucM5y7EsExlXEkkyJb__hWhMyvOI6Tk8yWBeJeWvKGpmmE2rY4gLdwwc4Qgu8Ryh5Hw97NoKiFWjFD4xRxhw4MgYKz0co9LSmPUA2ovbPD_Ea3F5tODYzhlztxuFZNeYsse_NgbTzqXlui5fJIZJ5nRZL-FX0AN9hDLA</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Lees, Eric W.</creator><creator>Bui, Justin C.</creator><creator>Song, Datong</creator><creator>Weber, Adam Z.</creator><creator>Berlinguette, Curtis P.</creator><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000016875849X</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/000000034525957X</orcidid></search><sort><creationdate>20220125</creationdate><title>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</title><author>Lees, Eric W. ; Bui, Justin C. ; Song, Datong ; Weber, Adam Z. ; Berlinguette, Curtis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18775913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>online_resources</toplevel><creatorcontrib>Lees, Eric W.</creatorcontrib><creatorcontrib>Bui, Justin C.</creatorcontrib><creatorcontrib>Song, Datong</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Berlinguette, Curtis P.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lees, Eric W.</au><au>Bui, Justin C.</au><au>Song, Datong</au><au>Weber, Adam Z.</au><au>Berlinguette, Curtis P.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer</atitle><jtitle>ACS energy letters</jtitle><date>2022-01-25</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Bicarbonate electrolyzers are devices designed to convert CO2 captured from point sources or the atmosphere into chemicals and fuels without needing to first isolate pure CO2 gas. In this work, we report here an experimentally validated model that quantifies the reaction chemistry and mass transfer processes within the catalyst layer and cation exchange membrane layer of a bicarbonate electrolyzer. Our results demonstrate that two distinct chemical microenvironments are key to forming CO at high rates: an acidic membrane layer that promotes in situ CO2 formation and a basic catalyst layer that suppresses the hydrogen evolution reaction. We show that the rate of CO product formation can be increased by modulating the catalyst and membrane layer properties to increase the rate of in situ CO2 generation and transport to the cathode. These insights serve to inform the design of bicarbonate and BPM-based CO2 electrolyzers while demonstrating the value of modeling for resolving rate-determining processes in electrochemical systems.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><orcidid>https://orcid.org/000000016875849X</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/000000034525957X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2022-01, Vol.7 (2)
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1877591
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Continuum Model to Define the Chemistry and Mass Transfer in a Bicarbonate Electrolyzer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuum%20Model%20to%20Define%20the%20Chemistry%20and%20Mass%20Transfer%20in%20a%20Bicarbonate%20Electrolyzer&rft.jtitle=ACS%20energy%20letters&rft.au=Lees,%20Eric%20W.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-01-25&rft.volume=7&rft.issue=2&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/&rft_dat=%3Costi%3E1877591%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_18775913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true