Loading…
Dynamic spatial progression of isolated lithium during battery operations
The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries 1 – 3 . Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life 4 – 6 , owing to the continuous generation of solid electrolyte interface 7...
Saved in:
Published in: | Nature (London) 2021-12, Vol.600 (7890), p.659-663 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873 |
---|---|
cites | cdi_FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873 |
container_end_page | 663 |
container_issue | 7890 |
container_start_page | 659 |
container_title | Nature (London) |
container_volume | 600 |
creator | Liu, Fang Xu, Rong Wu, Yecun Boyle, David Thomas Yang, Ankun Xu, Jinwei Zhu, Yangying Ye, Yusheng Yu, Zhiao Zhang, Zewen Xiao, Xin Huang, Wenxiao Wang, Hansen Chen, Hao Cui, Yi |
description | The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries
1
–
3
. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life
4
–
6
, owing to the continuous generation of solid electrolyte interface
7
,
8
and isolated Li (i-Li)
9
–
11
. The formation of i-Li during the nonuniform dissolution of Li dendrites
12
leads to a substantial capacity loss in lithium batteries under most testing conditions
13
. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or ‘dead’ in batteries
14
,
15
. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu–Li cells with >100% Coulombic efficiency and realize LiNi
0.5
Mn
0.3
Co
0.2
O
2
(NMC)–Li full cells with extended cycle life.
An electrochemical process stimulates the progression toward the electrode of isolated or ‘dead’ lithium in a battery, recovering its electrical connection, and the effect is demonstrated by increased cycle life. |
doi_str_mv | 10.1038/s41586-021-04168-w |
format | article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1878582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687699778</galeid><sourcerecordid>A687699778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873</originalsourceid><addsrcrecordid>eNp90stu1DAUBuAIgehQeAEWKGo3sEixHceXZVUKjFQJicva8nhOUleJndqOyrx9HVKgg0YoiyjWd37JJ39RvMboDKNavI8UN4JViOAKUcxEdfekWGHKWUWZ4E-LFUJEVEjU7Kh4EeMNQqjBnD4vjmoqay4kWxXrDzunB2vKOOpkdV-OwXcBYrTelb4tbfS9TrAte5uu7TSU2ylY15UbnRKEXelHCHnQu_iyeNbqPsKrh_dx8ePj5feLz9XVl0_ri_OryjBMUiUbRjjGSHMKUjJKBRONYU2tBXAqOLSaY9JwSrjRGIwm-ZttpEC8rYng9XFxsuT6mKyKxiYw18Y7ByYpLLhoBMno7YLydW4niEkNNhroe-3AT1ERhmsisURz3uk_9MZPweUrzIoRIpr6kep0D8q61qegzRyqzvOymZSci6yqA6oDl5fUewetzcd7_uSAN6O9VY_R2QGUny3kH3cw9d3eQDYJfqZOTzGq9bev-5Ys1gQfY4BWjcEOOuwURmpumVpapnLL1K-Wqbs89OZhZdNmgO2fkd-1yqBeQBzntkD4u9P_xN4DsA3YDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616228537</pqid></control><display><type>article</type><title>Dynamic spatial progression of isolated lithium during battery operations</title><source>Nature</source><creator>Liu, Fang ; Xu, Rong ; Wu, Yecun ; Boyle, David Thomas ; Yang, Ankun ; Xu, Jinwei ; Zhu, Yangying ; Ye, Yusheng ; Yu, Zhiao ; Zhang, Zewen ; Xiao, Xin ; Huang, Wenxiao ; Wang, Hansen ; Chen, Hao ; Cui, Yi</creator><creatorcontrib>Liu, Fang ; Xu, Rong ; Wu, Yecun ; Boyle, David Thomas ; Yang, Ankun ; Xu, Jinwei ; Zhu, Yangying ; Ye, Yusheng ; Yu, Zhiao ; Zhang, Zewen ; Xiao, Xin ; Huang, Wenxiao ; Wang, Hansen ; Chen, Hao ; Cui, Yi ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries
1
–
3
. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life
4
–
6
, owing to the continuous generation of solid electrolyte interface
7
,
8
and isolated Li (i-Li)
9
–
11
. The formation of i-Li during the nonuniform dissolution of Li dendrites
12
leads to a substantial capacity loss in lithium batteries under most testing conditions
13
. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or ‘dead’ in batteries
14
,
15
. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu–Li cells with >100% Coulombic efficiency and realize LiNi
0.5
Mn
0.3
Co
0.2
O
2
(NMC)–Li full cells with extended cycle life.
An electrochemical process stimulates the progression toward the electrode of isolated or ‘dead’ lithium in a battery, recovering its electrical connection, and the effect is demonstrated by increased cycle life.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04168-w</identifier><identifier>PMID: 34937896</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/4077 ; 639/925 ; Anodes ; Batteries ; Chemical properties ; Dissolution ; Electric fields ; Electric properties ; Electrode polarization ; Electrodes ; Electrolytes ; Electrolytic cells ; ENERGY STORAGE ; Equilibrium ; Humanities and Social Sciences ; Lithium ; Lithium batteries ; Materials ; Morphology ; multidisciplinary ; Science ; Science (multidisciplinary) ; Solid electrolytes ; Storage systems</subject><ispartof>Nature (London), 2021-12, Vol.600 (7890), p.659-663</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 23-Dec 30, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873</citedby><cites>FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873</cites><orcidid>0000-0001-9832-2478 ; 0000-0002-6103-6352 ; 0000-0001-8746-1640 ; 0000-0003-1098-9484 ; 0000-0002-2852-0070 ; 0000-0002-6738-1659 ; 0000-0001-6011-4489 ; 0000-0002-0452-275X ; 0000-0003-0885-5604 ; 0000000310989484 ; 0000000308855604 ; 0000000267381659 ; 0000000228520070 ; 0000000261036352 ; 0000000160114489 ; 0000000187461640 ; 000000020452275X ; 0000000198322478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34937896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1878582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xu, Rong</creatorcontrib><creatorcontrib>Wu, Yecun</creatorcontrib><creatorcontrib>Boyle, David Thomas</creatorcontrib><creatorcontrib>Yang, Ankun</creatorcontrib><creatorcontrib>Xu, Jinwei</creatorcontrib><creatorcontrib>Zhu, Yangying</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Yu, Zhiao</creatorcontrib><creatorcontrib>Zhang, Zewen</creatorcontrib><creatorcontrib>Xiao, Xin</creatorcontrib><creatorcontrib>Huang, Wenxiao</creatorcontrib><creatorcontrib>Wang, Hansen</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Dynamic spatial progression of isolated lithium during battery operations</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries
1
–
3
. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life
4
–
6
, owing to the continuous generation of solid electrolyte interface
7
,
8
and isolated Li (i-Li)
9
–
11
. The formation of i-Li during the nonuniform dissolution of Li dendrites
12
leads to a substantial capacity loss in lithium batteries under most testing conditions
13
. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or ‘dead’ in batteries
14
,
15
. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu–Li cells with >100% Coulombic efficiency and realize LiNi
0.5
Mn
0.3
Co
0.2
O
2
(NMC)–Li full cells with extended cycle life.
An electrochemical process stimulates the progression toward the electrode of isolated or ‘dead’ lithium in a battery, recovering its electrical connection, and the effect is demonstrated by increased cycle life.</description><subject>639/301</subject><subject>639/4077</subject><subject>639/925</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Chemical properties</subject><subject>Dissolution</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>ENERGY STORAGE</subject><subject>Equilibrium</subject><subject>Humanities and Social Sciences</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Materials</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid electrolytes</subject><subject>Storage systems</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90stu1DAUBuAIgehQeAEWKGo3sEixHceXZVUKjFQJicva8nhOUleJndqOyrx9HVKgg0YoiyjWd37JJ39RvMboDKNavI8UN4JViOAKUcxEdfekWGHKWUWZ4E-LFUJEVEjU7Kh4EeMNQqjBnD4vjmoqay4kWxXrDzunB2vKOOpkdV-OwXcBYrTelb4tbfS9TrAte5uu7TSU2ylY15UbnRKEXelHCHnQu_iyeNbqPsKrh_dx8ePj5feLz9XVl0_ri_OryjBMUiUbRjjGSHMKUjJKBRONYU2tBXAqOLSaY9JwSrjRGIwm-ZttpEC8rYng9XFxsuT6mKyKxiYw18Y7ByYpLLhoBMno7YLydW4niEkNNhroe-3AT1ERhmsisURz3uk_9MZPweUrzIoRIpr6kep0D8q61qegzRyqzvOymZSci6yqA6oDl5fUewetzcd7_uSAN6O9VY_R2QGUny3kH3cw9d3eQDYJfqZOTzGq9bev-5Ys1gQfY4BWjcEOOuwURmpumVpapnLL1K-Wqbs89OZhZdNmgO2fkd-1yqBeQBzntkD4u9P_xN4DsA3YDQ</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Liu, Fang</creator><creator>Xu, Rong</creator><creator>Wu, Yecun</creator><creator>Boyle, David Thomas</creator><creator>Yang, Ankun</creator><creator>Xu, Jinwei</creator><creator>Zhu, Yangying</creator><creator>Ye, Yusheng</creator><creator>Yu, Zhiao</creator><creator>Zhang, Zewen</creator><creator>Xiao, Xin</creator><creator>Huang, Wenxiao</creator><creator>Wang, Hansen</creator><creator>Chen, Hao</creator><creator>Cui, Yi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9832-2478</orcidid><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000-0001-8746-1640</orcidid><orcidid>https://orcid.org/0000-0003-1098-9484</orcidid><orcidid>https://orcid.org/0000-0002-2852-0070</orcidid><orcidid>https://orcid.org/0000-0002-6738-1659</orcidid><orcidid>https://orcid.org/0000-0001-6011-4489</orcidid><orcidid>https://orcid.org/0000-0002-0452-275X</orcidid><orcidid>https://orcid.org/0000-0003-0885-5604</orcidid><orcidid>https://orcid.org/0000000310989484</orcidid><orcidid>https://orcid.org/0000000308855604</orcidid><orcidid>https://orcid.org/0000000267381659</orcidid><orcidid>https://orcid.org/0000000228520070</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000160114489</orcidid><orcidid>https://orcid.org/0000000187461640</orcidid><orcidid>https://orcid.org/000000020452275X</orcidid><orcidid>https://orcid.org/0000000198322478</orcidid></search><sort><creationdate>20211223</creationdate><title>Dynamic spatial progression of isolated lithium during battery operations</title><author>Liu, Fang ; Xu, Rong ; Wu, Yecun ; Boyle, David Thomas ; Yang, Ankun ; Xu, Jinwei ; Zhu, Yangying ; Ye, Yusheng ; Yu, Zhiao ; Zhang, Zewen ; Xiao, Xin ; Huang, Wenxiao ; Wang, Hansen ; Chen, Hao ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301</topic><topic>639/4077</topic><topic>639/925</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Chemical properties</topic><topic>Dissolution</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>ENERGY STORAGE</topic><topic>Equilibrium</topic><topic>Humanities and Social Sciences</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Materials</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid electrolytes</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xu, Rong</creatorcontrib><creatorcontrib>Wu, Yecun</creatorcontrib><creatorcontrib>Boyle, David Thomas</creatorcontrib><creatorcontrib>Yang, Ankun</creatorcontrib><creatorcontrib>Xu, Jinwei</creatorcontrib><creatorcontrib>Zhu, Yangying</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Yu, Zhiao</creatorcontrib><creatorcontrib>Zhang, Zewen</creatorcontrib><creatorcontrib>Xiao, Xin</creatorcontrib><creatorcontrib>Huang, Wenxiao</creatorcontrib><creatorcontrib>Wang, Hansen</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fang</au><au>Xu, Rong</au><au>Wu, Yecun</au><au>Boyle, David Thomas</au><au>Yang, Ankun</au><au>Xu, Jinwei</au><au>Zhu, Yangying</au><au>Ye, Yusheng</au><au>Yu, Zhiao</au><au>Zhang, Zewen</au><au>Xiao, Xin</au><au>Huang, Wenxiao</au><au>Wang, Hansen</au><au>Chen, Hao</au><au>Cui, Yi</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic spatial progression of isolated lithium during battery operations</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>600</volume><issue>7890</issue><spage>659</spage><epage>663</epage><pages>659-663</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries
1
–
3
. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life
4
–
6
, owing to the continuous generation of solid electrolyte interface
7
,
8
and isolated Li (i-Li)
9
–
11
. The formation of i-Li during the nonuniform dissolution of Li dendrites
12
leads to a substantial capacity loss in lithium batteries under most testing conditions
13
. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or ‘dead’ in batteries
14
,
15
. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu–Li cells with >100% Coulombic efficiency and realize LiNi
0.5
Mn
0.3
Co
0.2
O
2
(NMC)–Li full cells with extended cycle life.
An electrochemical process stimulates the progression toward the electrode of isolated or ‘dead’ lithium in a battery, recovering its electrical connection, and the effect is demonstrated by increased cycle life.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34937896</pmid><doi>10.1038/s41586-021-04168-w</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9832-2478</orcidid><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000-0001-8746-1640</orcidid><orcidid>https://orcid.org/0000-0003-1098-9484</orcidid><orcidid>https://orcid.org/0000-0002-2852-0070</orcidid><orcidid>https://orcid.org/0000-0002-6738-1659</orcidid><orcidid>https://orcid.org/0000-0001-6011-4489</orcidid><orcidid>https://orcid.org/0000-0002-0452-275X</orcidid><orcidid>https://orcid.org/0000-0003-0885-5604</orcidid><orcidid>https://orcid.org/0000000310989484</orcidid><orcidid>https://orcid.org/0000000308855604</orcidid><orcidid>https://orcid.org/0000000267381659</orcidid><orcidid>https://orcid.org/0000000228520070</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000160114489</orcidid><orcidid>https://orcid.org/0000000187461640</orcidid><orcidid>https://orcid.org/000000020452275X</orcidid><orcidid>https://orcid.org/0000000198322478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-12, Vol.600 (7890), p.659-663 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1878582 |
source | Nature |
subjects | 639/301 639/4077 639/925 Anodes Batteries Chemical properties Dissolution Electric fields Electric properties Electrode polarization Electrodes Electrolytes Electrolytic cells ENERGY STORAGE Equilibrium Humanities and Social Sciences Lithium Lithium batteries Materials Morphology multidisciplinary Science Science (multidisciplinary) Solid electrolytes Storage systems |
title | Dynamic spatial progression of isolated lithium during battery operations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20spatial%20progression%20of%20isolated%20lithium%20during%20battery%20operations&rft.jtitle=Nature%20(London)&rft.au=Liu,%20Fang&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2021-12-23&rft.volume=600&rft.issue=7890&rft.spage=659&rft.epage=663&rft.pages=659-663&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04168-w&rft_dat=%3Cgale_osti_%3EA687699778%3C/gale_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-95627110a74e996448685c653a8e7487efa71257427ca1eca2a716b9807f32873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616228537&rft_id=info:pmid/34937896&rft_galeid=A687699778&rfr_iscdi=true |