Loading…

Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19....

Full description

Saved in:
Bibliographic Details
Published in:The international journal of high performance computing applications 2022-11, Vol.36 (5-6), p.603-623
Main Authors: Trifan, Anda, Gorgun, Defne, Salim, Michael, Li, Zongyi, Brace, Alexander, Zvyagin, Maxim, Ma, Heng, Clyde, Austin, Clark, David, Hardy, David J, Burnley, Tom, Huang, Lei, McCalpin, John, Emani, Murali, Yoo, Hyenseung, Yin, Junqi, Tsaris, Aristeidis, Subbiah, Vishal, Raza, Tanveer, Liu, Jessica, Trebesch, Noah, Wells, Geoffrey, Mysore, Venkatesh, Gibbs, Thomas, Phillips, James, Chennubhotla, S Chakra, Foster, Ian, Stevens, Rick, Anandkumar, Anima, Vishwanath, Venkatram, Stone, John E, Tajkhorshid, Emad, Harris, Sarah A, Ramanathan, Arvind
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3
cites cdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3
container_end_page 623
container_issue 5-6
container_start_page 603
container_title The international journal of high performance computing applications
container_volume 36
creator Trifan, Anda
Gorgun, Defne
Salim, Michael
Li, Zongyi
Brace, Alexander
Zvyagin, Maxim
Ma, Heng
Clyde, Austin
Clark, David
Hardy, David J
Burnley, Tom
Huang, Lei
McCalpin, John
Emani, Murali
Yoo, Hyenseung
Yin, Junqi
Tsaris, Aristeidis
Subbiah, Vishal
Raza, Tanveer
Liu, Jessica
Trebesch, Noah
Wells, Geoffrey
Mysore, Venkatesh
Gibbs, Thomas
Phillips, James
Chennubhotla, S Chakra
Foster, Ian
Stevens, Rick
Anandkumar, Anima
Vishwanath, Venkatram
Stone, John E
Tajkhorshid, Emad
Harris, Sarah A
Ramanathan, Arvind
description The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.
doi_str_mv 10.1177/10943420221113513
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1880144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10943420221113513</sage_id><sourcerecordid>2735495337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEoqXwAGyQBRs2Lv6LnbCrRgVGKmID68ixb2ZcJXawnUHzfjwYTqdQCcTKV_d-5xzZvlX1kpJLSpV6R0kruGCEMUopryl_VJ1TJShmjZCPS13meAXOqmcp3RJCpOD10-qMl7ngkp1XP7c-wzi6HfiMIqQwLtkF_x6t_V3U2fkd2sRjwNef0Q-X9-hqi210B_BoWsbs8IMIJVdaei0TygGFPkE8AMp7QAkOEAFps2RYc2ZXvEM8onT0NoYJkAkxeH1wcUmYFWQenbnzwjlqn0x0813IpM3eeShS54vf2ntePRn0mODF_XlRfftw_XXzCd98-bjdXN1gI3iTcWuZMKwxA2MSuAGtrYR2kGoYWs6HtidDAUTT10pbRanUvVTtoBSx1hpr-EX1-uQbUnZdMi6D2ZvgPZjc0aYhVIgCvT1BcwzfF0i5m1wy5Y21h7CkjrV1zaSoCS3om7_Q27BEX67QMcVr0dacq0LRE2ViSCnC0M3RTToeO0q6dQ-6f_agaF7dOy_9BPaP4vfHF-DyBCS9g4fY_zv-ArIywHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735495337</pqid></control><display><type>article</type><title>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</title><source>SAGE</source><creator>Trifan, Anda ; Gorgun, Defne ; Salim, Michael ; Li, Zongyi ; Brace, Alexander ; Zvyagin, Maxim ; Ma, Heng ; Clyde, Austin ; Clark, David ; Hardy, David J ; Burnley, Tom ; Huang, Lei ; McCalpin, John ; Emani, Murali ; Yoo, Hyenseung ; Yin, Junqi ; Tsaris, Aristeidis ; Subbiah, Vishal ; Raza, Tanveer ; Liu, Jessica ; Trebesch, Noah ; Wells, Geoffrey ; Mysore, Venkatesh ; Gibbs, Thomas ; Phillips, James ; Chennubhotla, S Chakra ; Foster, Ian ; Stevens, Rick ; Anandkumar, Anima ; Vishwanath, Venkatram ; Stone, John E ; Tajkhorshid, Emad ; Harris, Sarah A ; Ramanathan, Arvind</creator><creatorcontrib>Trifan, Anda ; Gorgun, Defne ; Salim, Michael ; Li, Zongyi ; Brace, Alexander ; Zvyagin, Maxim ; Ma, Heng ; Clyde, Austin ; Clark, David ; Hardy, David J ; Burnley, Tom ; Huang, Lei ; McCalpin, John ; Emani, Murali ; Yoo, Hyenseung ; Yin, Junqi ; Tsaris, Aristeidis ; Subbiah, Vishal ; Raza, Tanveer ; Liu, Jessica ; Trebesch, Noah ; Wells, Geoffrey ; Mysore, Venkatesh ; Gibbs, Thomas ; Phillips, James ; Chennubhotla, S Chakra ; Foster, Ian ; Stevens, Rick ; Anandkumar, Anima ; Vishwanath, Venkatram ; Stone, John E ; Tajkhorshid, Emad ; Harris, Sarah A ; Ramanathan, Arvind</creatorcontrib><description>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/10943420221113513</identifier><identifier>PMID: 38464362</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial intelligence ; Finite element method ; Molecular dynamics ; Molecular machines ; Replication ; Resource utilization ; Respiratory diseases ; Simulation ; Viral diseases ; Workflow</subject><ispartof>The international journal of high performance computing applications, 2022-11, Vol.36 (5-6), p.603-623</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</citedby><cites>FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</cites><orcidid>0000-0002-1622-5488 ; 0000-0003-2129-5269 ; 0000000321295269 ; 0000000216225488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,79110</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38464362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1880144$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trifan, Anda</creatorcontrib><creatorcontrib>Gorgun, Defne</creatorcontrib><creatorcontrib>Salim, Michael</creatorcontrib><creatorcontrib>Li, Zongyi</creatorcontrib><creatorcontrib>Brace, Alexander</creatorcontrib><creatorcontrib>Zvyagin, Maxim</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Clyde, Austin</creatorcontrib><creatorcontrib>Clark, David</creatorcontrib><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Burnley, Tom</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>McCalpin, John</creatorcontrib><creatorcontrib>Emani, Murali</creatorcontrib><creatorcontrib>Yoo, Hyenseung</creatorcontrib><creatorcontrib>Yin, Junqi</creatorcontrib><creatorcontrib>Tsaris, Aristeidis</creatorcontrib><creatorcontrib>Subbiah, Vishal</creatorcontrib><creatorcontrib>Raza, Tanveer</creatorcontrib><creatorcontrib>Liu, Jessica</creatorcontrib><creatorcontrib>Trebesch, Noah</creatorcontrib><creatorcontrib>Wells, Geoffrey</creatorcontrib><creatorcontrib>Mysore, Venkatesh</creatorcontrib><creatorcontrib>Gibbs, Thomas</creatorcontrib><creatorcontrib>Phillips, James</creatorcontrib><creatorcontrib>Chennubhotla, S Chakra</creatorcontrib><creatorcontrib>Foster, Ian</creatorcontrib><creatorcontrib>Stevens, Rick</creatorcontrib><creatorcontrib>Anandkumar, Anima</creatorcontrib><creatorcontrib>Vishwanath, Venkatram</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Tajkhorshid, Emad</creatorcontrib><creatorcontrib>Harris, Sarah A</creatorcontrib><creatorcontrib>Ramanathan, Arvind</creatorcontrib><title>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</title><title>The international journal of high performance computing applications</title><addtitle>Int J High Perform Comput Appl</addtitle><description>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.</description><subject>Artificial intelligence</subject><subject>Finite element method</subject><subject>Molecular dynamics</subject><subject>Molecular machines</subject><subject>Replication</subject><subject>Resource utilization</subject><subject>Respiratory diseases</subject><subject>Simulation</subject><subject>Viral diseases</subject><subject>Workflow</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ks1u1DAUhSMEoqXwAGyQBRs2Lv6LnbCrRgVGKmID68ixb2ZcJXawnUHzfjwYTqdQCcTKV_d-5xzZvlX1kpJLSpV6R0kruGCEMUopryl_VJ1TJShmjZCPS13meAXOqmcp3RJCpOD10-qMl7ngkp1XP7c-wzi6HfiMIqQwLtkF_x6t_V3U2fkd2sRjwNef0Q-X9-hqi210B_BoWsbs8IMIJVdaei0TygGFPkE8AMp7QAkOEAFps2RYc2ZXvEM8onT0NoYJkAkxeH1wcUmYFWQenbnzwjlqn0x0813IpM3eeShS54vf2ntePRn0mODF_XlRfftw_XXzCd98-bjdXN1gI3iTcWuZMKwxA2MSuAGtrYR2kGoYWs6HtidDAUTT10pbRanUvVTtoBSx1hpr-EX1-uQbUnZdMi6D2ZvgPZjc0aYhVIgCvT1BcwzfF0i5m1wy5Y21h7CkjrV1zaSoCS3om7_Q27BEX67QMcVr0dacq0LRE2ViSCnC0M3RTToeO0q6dQ-6f_agaF7dOy_9BPaP4vfHF-DyBCS9g4fY_zv-ArIywHA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Trifan, Anda</creator><creator>Gorgun, Defne</creator><creator>Salim, Michael</creator><creator>Li, Zongyi</creator><creator>Brace, Alexander</creator><creator>Zvyagin, Maxim</creator><creator>Ma, Heng</creator><creator>Clyde, Austin</creator><creator>Clark, David</creator><creator>Hardy, David J</creator><creator>Burnley, Tom</creator><creator>Huang, Lei</creator><creator>McCalpin, John</creator><creator>Emani, Murali</creator><creator>Yoo, Hyenseung</creator><creator>Yin, Junqi</creator><creator>Tsaris, Aristeidis</creator><creator>Subbiah, Vishal</creator><creator>Raza, Tanveer</creator><creator>Liu, Jessica</creator><creator>Trebesch, Noah</creator><creator>Wells, Geoffrey</creator><creator>Mysore, Venkatesh</creator><creator>Gibbs, Thomas</creator><creator>Phillips, James</creator><creator>Chennubhotla, S Chakra</creator><creator>Foster, Ian</creator><creator>Stevens, Rick</creator><creator>Anandkumar, Anima</creator><creator>Vishwanath, Venkatram</creator><creator>Stone, John E</creator><creator>Tajkhorshid, Emad</creator><creator>Harris, Sarah A</creator><creator>Ramanathan, Arvind</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1622-5488</orcidid><orcidid>https://orcid.org/0000-0003-2129-5269</orcidid><orcidid>https://orcid.org/0000000321295269</orcidid><orcidid>https://orcid.org/0000000216225488</orcidid></search><sort><creationdate>20221101</creationdate><title>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</title><author>Trifan, Anda ; Gorgun, Defne ; Salim, Michael ; Li, Zongyi ; Brace, Alexander ; Zvyagin, Maxim ; Ma, Heng ; Clyde, Austin ; Clark, David ; Hardy, David J ; Burnley, Tom ; Huang, Lei ; McCalpin, John ; Emani, Murali ; Yoo, Hyenseung ; Yin, Junqi ; Tsaris, Aristeidis ; Subbiah, Vishal ; Raza, Tanveer ; Liu, Jessica ; Trebesch, Noah ; Wells, Geoffrey ; Mysore, Venkatesh ; Gibbs, Thomas ; Phillips, James ; Chennubhotla, S Chakra ; Foster, Ian ; Stevens, Rick ; Anandkumar, Anima ; Vishwanath, Venkatram ; Stone, John E ; Tajkhorshid, Emad ; Harris, Sarah A ; Ramanathan, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Finite element method</topic><topic>Molecular dynamics</topic><topic>Molecular machines</topic><topic>Replication</topic><topic>Resource utilization</topic><topic>Respiratory diseases</topic><topic>Simulation</topic><topic>Viral diseases</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trifan, Anda</creatorcontrib><creatorcontrib>Gorgun, Defne</creatorcontrib><creatorcontrib>Salim, Michael</creatorcontrib><creatorcontrib>Li, Zongyi</creatorcontrib><creatorcontrib>Brace, Alexander</creatorcontrib><creatorcontrib>Zvyagin, Maxim</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Clyde, Austin</creatorcontrib><creatorcontrib>Clark, David</creatorcontrib><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Burnley, Tom</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>McCalpin, John</creatorcontrib><creatorcontrib>Emani, Murali</creatorcontrib><creatorcontrib>Yoo, Hyenseung</creatorcontrib><creatorcontrib>Yin, Junqi</creatorcontrib><creatorcontrib>Tsaris, Aristeidis</creatorcontrib><creatorcontrib>Subbiah, Vishal</creatorcontrib><creatorcontrib>Raza, Tanveer</creatorcontrib><creatorcontrib>Liu, Jessica</creatorcontrib><creatorcontrib>Trebesch, Noah</creatorcontrib><creatorcontrib>Wells, Geoffrey</creatorcontrib><creatorcontrib>Mysore, Venkatesh</creatorcontrib><creatorcontrib>Gibbs, Thomas</creatorcontrib><creatorcontrib>Phillips, James</creatorcontrib><creatorcontrib>Chennubhotla, S Chakra</creatorcontrib><creatorcontrib>Foster, Ian</creatorcontrib><creatorcontrib>Stevens, Rick</creatorcontrib><creatorcontrib>Anandkumar, Anima</creatorcontrib><creatorcontrib>Vishwanath, Venkatram</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Tajkhorshid, Emad</creatorcontrib><creatorcontrib>Harris, Sarah A</creatorcontrib><creatorcontrib>Ramanathan, Arvind</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trifan, Anda</au><au>Gorgun, Defne</au><au>Salim, Michael</au><au>Li, Zongyi</au><au>Brace, Alexander</au><au>Zvyagin, Maxim</au><au>Ma, Heng</au><au>Clyde, Austin</au><au>Clark, David</au><au>Hardy, David J</au><au>Burnley, Tom</au><au>Huang, Lei</au><au>McCalpin, John</au><au>Emani, Murali</au><au>Yoo, Hyenseung</au><au>Yin, Junqi</au><au>Tsaris, Aristeidis</au><au>Subbiah, Vishal</au><au>Raza, Tanveer</au><au>Liu, Jessica</au><au>Trebesch, Noah</au><au>Wells, Geoffrey</au><au>Mysore, Venkatesh</au><au>Gibbs, Thomas</au><au>Phillips, James</au><au>Chennubhotla, S Chakra</au><au>Foster, Ian</au><au>Stevens, Rick</au><au>Anandkumar, Anima</au><au>Vishwanath, Venkatram</au><au>Stone, John E</au><au>Tajkhorshid, Emad</au><au>Harris, Sarah A</au><au>Ramanathan, Arvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</atitle><jtitle>The international journal of high performance computing applications</jtitle><addtitle>Int J High Perform Comput Appl</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>36</volume><issue>5-6</issue><spage>603</spage><epage>623</epage><pages>603-623</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38464362</pmid><doi>10.1177/10943420221113513</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1622-5488</orcidid><orcidid>https://orcid.org/0000-0003-2129-5269</orcidid><orcidid>https://orcid.org/0000000321295269</orcidid><orcidid>https://orcid.org/0000000216225488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-3420
ispartof The international journal of high performance computing applications, 2022-11, Vol.36 (5-6), p.603-623
issn 1094-3420
1741-2846
language eng
recordid cdi_osti_scitechconnect_1880144
source SAGE
subjects Artificial intelligence
Finite element method
Molecular dynamics
Molecular machines
Replication
Resource utilization
Respiratory diseases
Simulation
Viral diseases
Workflow
title Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20resolution:%20Integrating%20Cryo-EM%20with%20AI-driven%20multi-resolution%20simulations%20to%20observe%20the%20severe%20acute%20respiratory%20syndrome%20coronavirus-2%20replication-transcription%20machinery%20in%20action&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Trifan,%20Anda&rft.date=2022-11-01&rft.volume=36&rft.issue=5-6&rft.spage=603&rft.epage=623&rft.pages=603-623&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/10943420221113513&rft_dat=%3Cproquest_osti_%3E2735495337%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735495337&rft_id=info:pmid/38464362&rft_sage_id=10.1177_10943420221113513&rfr_iscdi=true