Loading…
Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19....
Saved in:
Published in: | The international journal of high performance computing applications 2022-11, Vol.36 (5-6), p.603-623 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3 |
container_end_page | 623 |
container_issue | 5-6 |
container_start_page | 603 |
container_title | The international journal of high performance computing applications |
container_volume | 36 |
creator | Trifan, Anda Gorgun, Defne Salim, Michael Li, Zongyi Brace, Alexander Zvyagin, Maxim Ma, Heng Clyde, Austin Clark, David Hardy, David J Burnley, Tom Huang, Lei McCalpin, John Emani, Murali Yoo, Hyenseung Yin, Junqi Tsaris, Aristeidis Subbiah, Vishal Raza, Tanveer Liu, Jessica Trebesch, Noah Wells, Geoffrey Mysore, Venkatesh Gibbs, Thomas Phillips, James Chennubhotla, S Chakra Foster, Ian Stevens, Rick Anandkumar, Anima Vishwanath, Venkatram Stone, John E Tajkhorshid, Emad Harris, Sarah A Ramanathan, Arvind |
description | The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale. |
doi_str_mv | 10.1177/10943420221113513 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1880144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10943420221113513</sage_id><sourcerecordid>2735495337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</originalsourceid><addsrcrecordid>eNp1ks1u1DAUhSMEoqXwAGyQBRs2Lv6LnbCrRgVGKmID68ixb2ZcJXawnUHzfjwYTqdQCcTKV_d-5xzZvlX1kpJLSpV6R0kruGCEMUopryl_VJ1TJShmjZCPS13meAXOqmcp3RJCpOD10-qMl7ngkp1XP7c-wzi6HfiMIqQwLtkF_x6t_V3U2fkd2sRjwNef0Q-X9-hqi210B_BoWsbs8IMIJVdaei0TygGFPkE8AMp7QAkOEAFps2RYc2ZXvEM8onT0NoYJkAkxeH1wcUmYFWQenbnzwjlqn0x0813IpM3eeShS54vf2ntePRn0mODF_XlRfftw_XXzCd98-bjdXN1gI3iTcWuZMKwxA2MSuAGtrYR2kGoYWs6HtidDAUTT10pbRanUvVTtoBSx1hpr-EX1-uQbUnZdMi6D2ZvgPZjc0aYhVIgCvT1BcwzfF0i5m1wy5Y21h7CkjrV1zaSoCS3om7_Q27BEX67QMcVr0dacq0LRE2ViSCnC0M3RTToeO0q6dQ-6f_agaF7dOy_9BPaP4vfHF-DyBCS9g4fY_zv-ArIywHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735495337</pqid></control><display><type>article</type><title>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</title><source>SAGE</source><creator>Trifan, Anda ; Gorgun, Defne ; Salim, Michael ; Li, Zongyi ; Brace, Alexander ; Zvyagin, Maxim ; Ma, Heng ; Clyde, Austin ; Clark, David ; Hardy, David J ; Burnley, Tom ; Huang, Lei ; McCalpin, John ; Emani, Murali ; Yoo, Hyenseung ; Yin, Junqi ; Tsaris, Aristeidis ; Subbiah, Vishal ; Raza, Tanveer ; Liu, Jessica ; Trebesch, Noah ; Wells, Geoffrey ; Mysore, Venkatesh ; Gibbs, Thomas ; Phillips, James ; Chennubhotla, S Chakra ; Foster, Ian ; Stevens, Rick ; Anandkumar, Anima ; Vishwanath, Venkatram ; Stone, John E ; Tajkhorshid, Emad ; Harris, Sarah A ; Ramanathan, Arvind</creator><creatorcontrib>Trifan, Anda ; Gorgun, Defne ; Salim, Michael ; Li, Zongyi ; Brace, Alexander ; Zvyagin, Maxim ; Ma, Heng ; Clyde, Austin ; Clark, David ; Hardy, David J ; Burnley, Tom ; Huang, Lei ; McCalpin, John ; Emani, Murali ; Yoo, Hyenseung ; Yin, Junqi ; Tsaris, Aristeidis ; Subbiah, Vishal ; Raza, Tanveer ; Liu, Jessica ; Trebesch, Noah ; Wells, Geoffrey ; Mysore, Venkatesh ; Gibbs, Thomas ; Phillips, James ; Chennubhotla, S Chakra ; Foster, Ian ; Stevens, Rick ; Anandkumar, Anima ; Vishwanath, Venkatram ; Stone, John E ; Tajkhorshid, Emad ; Harris, Sarah A ; Ramanathan, Arvind</creatorcontrib><description>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/10943420221113513</identifier><identifier>PMID: 38464362</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial intelligence ; Finite element method ; Molecular dynamics ; Molecular machines ; Replication ; Resource utilization ; Respiratory diseases ; Simulation ; Viral diseases ; Workflow</subject><ispartof>The international journal of high performance computing applications, 2022-11, Vol.36 (5-6), p.603-623</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</citedby><cites>FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</cites><orcidid>0000-0002-1622-5488 ; 0000-0003-2129-5269 ; 0000000321295269 ; 0000000216225488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,79110</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38464362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1880144$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Trifan, Anda</creatorcontrib><creatorcontrib>Gorgun, Defne</creatorcontrib><creatorcontrib>Salim, Michael</creatorcontrib><creatorcontrib>Li, Zongyi</creatorcontrib><creatorcontrib>Brace, Alexander</creatorcontrib><creatorcontrib>Zvyagin, Maxim</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Clyde, Austin</creatorcontrib><creatorcontrib>Clark, David</creatorcontrib><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Burnley, Tom</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>McCalpin, John</creatorcontrib><creatorcontrib>Emani, Murali</creatorcontrib><creatorcontrib>Yoo, Hyenseung</creatorcontrib><creatorcontrib>Yin, Junqi</creatorcontrib><creatorcontrib>Tsaris, Aristeidis</creatorcontrib><creatorcontrib>Subbiah, Vishal</creatorcontrib><creatorcontrib>Raza, Tanveer</creatorcontrib><creatorcontrib>Liu, Jessica</creatorcontrib><creatorcontrib>Trebesch, Noah</creatorcontrib><creatorcontrib>Wells, Geoffrey</creatorcontrib><creatorcontrib>Mysore, Venkatesh</creatorcontrib><creatorcontrib>Gibbs, Thomas</creatorcontrib><creatorcontrib>Phillips, James</creatorcontrib><creatorcontrib>Chennubhotla, S Chakra</creatorcontrib><creatorcontrib>Foster, Ian</creatorcontrib><creatorcontrib>Stevens, Rick</creatorcontrib><creatorcontrib>Anandkumar, Anima</creatorcontrib><creatorcontrib>Vishwanath, Venkatram</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Tajkhorshid, Emad</creatorcontrib><creatorcontrib>Harris, Sarah A</creatorcontrib><creatorcontrib>Ramanathan, Arvind</creatorcontrib><title>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</title><title>The international journal of high performance computing applications</title><addtitle>Int J High Perform Comput Appl</addtitle><description>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.</description><subject>Artificial intelligence</subject><subject>Finite element method</subject><subject>Molecular dynamics</subject><subject>Molecular machines</subject><subject>Replication</subject><subject>Resource utilization</subject><subject>Respiratory diseases</subject><subject>Simulation</subject><subject>Viral diseases</subject><subject>Workflow</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ks1u1DAUhSMEoqXwAGyQBRs2Lv6LnbCrRgVGKmID68ixb2ZcJXawnUHzfjwYTqdQCcTKV_d-5xzZvlX1kpJLSpV6R0kruGCEMUopryl_VJ1TJShmjZCPS13meAXOqmcp3RJCpOD10-qMl7ngkp1XP7c-wzi6HfiMIqQwLtkF_x6t_V3U2fkd2sRjwNef0Q-X9-hqi210B_BoWsbs8IMIJVdaei0TygGFPkE8AMp7QAkOEAFps2RYc2ZXvEM8onT0NoYJkAkxeH1wcUmYFWQenbnzwjlqn0x0813IpM3eeShS54vf2ntePRn0mODF_XlRfftw_XXzCd98-bjdXN1gI3iTcWuZMKwxA2MSuAGtrYR2kGoYWs6HtidDAUTT10pbRanUvVTtoBSx1hpr-EX1-uQbUnZdMi6D2ZvgPZjc0aYhVIgCvT1BcwzfF0i5m1wy5Y21h7CkjrV1zaSoCS3om7_Q27BEX67QMcVr0dacq0LRE2ViSCnC0M3RTToeO0q6dQ-6f_agaF7dOy_9BPaP4vfHF-DyBCS9g4fY_zv-ArIywHA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Trifan, Anda</creator><creator>Gorgun, Defne</creator><creator>Salim, Michael</creator><creator>Li, Zongyi</creator><creator>Brace, Alexander</creator><creator>Zvyagin, Maxim</creator><creator>Ma, Heng</creator><creator>Clyde, Austin</creator><creator>Clark, David</creator><creator>Hardy, David J</creator><creator>Burnley, Tom</creator><creator>Huang, Lei</creator><creator>McCalpin, John</creator><creator>Emani, Murali</creator><creator>Yoo, Hyenseung</creator><creator>Yin, Junqi</creator><creator>Tsaris, Aristeidis</creator><creator>Subbiah, Vishal</creator><creator>Raza, Tanveer</creator><creator>Liu, Jessica</creator><creator>Trebesch, Noah</creator><creator>Wells, Geoffrey</creator><creator>Mysore, Venkatesh</creator><creator>Gibbs, Thomas</creator><creator>Phillips, James</creator><creator>Chennubhotla, S Chakra</creator><creator>Foster, Ian</creator><creator>Stevens, Rick</creator><creator>Anandkumar, Anima</creator><creator>Vishwanath, Venkatram</creator><creator>Stone, John E</creator><creator>Tajkhorshid, Emad</creator><creator>Harris, Sarah A</creator><creator>Ramanathan, Arvind</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1622-5488</orcidid><orcidid>https://orcid.org/0000-0003-2129-5269</orcidid><orcidid>https://orcid.org/0000000321295269</orcidid><orcidid>https://orcid.org/0000000216225488</orcidid></search><sort><creationdate>20221101</creationdate><title>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</title><author>Trifan, Anda ; Gorgun, Defne ; Salim, Michael ; Li, Zongyi ; Brace, Alexander ; Zvyagin, Maxim ; Ma, Heng ; Clyde, Austin ; Clark, David ; Hardy, David J ; Burnley, Tom ; Huang, Lei ; McCalpin, John ; Emani, Murali ; Yoo, Hyenseung ; Yin, Junqi ; Tsaris, Aristeidis ; Subbiah, Vishal ; Raza, Tanveer ; Liu, Jessica ; Trebesch, Noah ; Wells, Geoffrey ; Mysore, Venkatesh ; Gibbs, Thomas ; Phillips, James ; Chennubhotla, S Chakra ; Foster, Ian ; Stevens, Rick ; Anandkumar, Anima ; Vishwanath, Venkatram ; Stone, John E ; Tajkhorshid, Emad ; Harris, Sarah A ; Ramanathan, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Finite element method</topic><topic>Molecular dynamics</topic><topic>Molecular machines</topic><topic>Replication</topic><topic>Resource utilization</topic><topic>Respiratory diseases</topic><topic>Simulation</topic><topic>Viral diseases</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trifan, Anda</creatorcontrib><creatorcontrib>Gorgun, Defne</creatorcontrib><creatorcontrib>Salim, Michael</creatorcontrib><creatorcontrib>Li, Zongyi</creatorcontrib><creatorcontrib>Brace, Alexander</creatorcontrib><creatorcontrib>Zvyagin, Maxim</creatorcontrib><creatorcontrib>Ma, Heng</creatorcontrib><creatorcontrib>Clyde, Austin</creatorcontrib><creatorcontrib>Clark, David</creatorcontrib><creatorcontrib>Hardy, David J</creatorcontrib><creatorcontrib>Burnley, Tom</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>McCalpin, John</creatorcontrib><creatorcontrib>Emani, Murali</creatorcontrib><creatorcontrib>Yoo, Hyenseung</creatorcontrib><creatorcontrib>Yin, Junqi</creatorcontrib><creatorcontrib>Tsaris, Aristeidis</creatorcontrib><creatorcontrib>Subbiah, Vishal</creatorcontrib><creatorcontrib>Raza, Tanveer</creatorcontrib><creatorcontrib>Liu, Jessica</creatorcontrib><creatorcontrib>Trebesch, Noah</creatorcontrib><creatorcontrib>Wells, Geoffrey</creatorcontrib><creatorcontrib>Mysore, Venkatesh</creatorcontrib><creatorcontrib>Gibbs, Thomas</creatorcontrib><creatorcontrib>Phillips, James</creatorcontrib><creatorcontrib>Chennubhotla, S Chakra</creatorcontrib><creatorcontrib>Foster, Ian</creatorcontrib><creatorcontrib>Stevens, Rick</creatorcontrib><creatorcontrib>Anandkumar, Anima</creatorcontrib><creatorcontrib>Vishwanath, Venkatram</creatorcontrib><creatorcontrib>Stone, John E</creatorcontrib><creatorcontrib>Tajkhorshid, Emad</creatorcontrib><creatorcontrib>Harris, Sarah A</creatorcontrib><creatorcontrib>Ramanathan, Arvind</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trifan, Anda</au><au>Gorgun, Defne</au><au>Salim, Michael</au><au>Li, Zongyi</au><au>Brace, Alexander</au><au>Zvyagin, Maxim</au><au>Ma, Heng</au><au>Clyde, Austin</au><au>Clark, David</au><au>Hardy, David J</au><au>Burnley, Tom</au><au>Huang, Lei</au><au>McCalpin, John</au><au>Emani, Murali</au><au>Yoo, Hyenseung</au><au>Yin, Junqi</au><au>Tsaris, Aristeidis</au><au>Subbiah, Vishal</au><au>Raza, Tanveer</au><au>Liu, Jessica</au><au>Trebesch, Noah</au><au>Wells, Geoffrey</au><au>Mysore, Venkatesh</au><au>Gibbs, Thomas</au><au>Phillips, James</au><au>Chennubhotla, S Chakra</au><au>Foster, Ian</au><au>Stevens, Rick</au><au>Anandkumar, Anima</au><au>Vishwanath, Venkatram</au><au>Stone, John E</au><au>Tajkhorshid, Emad</au><au>Harris, Sarah A</au><au>Ramanathan, Arvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</atitle><jtitle>The international journal of high performance computing applications</jtitle><addtitle>Int J High Perform Comput Appl</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>36</volume><issue>5-6</issue><spage>603</spage><epage>623</epage><pages>603-623</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38464362</pmid><doi>10.1177/10943420221113513</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1622-5488</orcidid><orcidid>https://orcid.org/0000-0003-2129-5269</orcidid><orcidid>https://orcid.org/0000000321295269</orcidid><orcidid>https://orcid.org/0000000216225488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-3420 |
ispartof | The international journal of high performance computing applications, 2022-11, Vol.36 (5-6), p.603-623 |
issn | 1094-3420 1741-2846 |
language | eng |
recordid | cdi_osti_scitechconnect_1880144 |
source | SAGE |
subjects | Artificial intelligence Finite element method Molecular dynamics Molecular machines Replication Resource utilization Respiratory diseases Simulation Viral diseases Workflow |
title | Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20resolution:%20Integrating%20Cryo-EM%20with%20AI-driven%20multi-resolution%20simulations%20to%20observe%20the%20severe%20acute%20respiratory%20syndrome%20coronavirus-2%20replication-transcription%20machinery%20in%20action&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Trifan,%20Anda&rft.date=2022-11-01&rft.volume=36&rft.issue=5-6&rft.spage=603&rft.epage=623&rft.pages=603-623&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/10943420221113513&rft_dat=%3Cproquest_osti_%3E2735495337%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-9d24c28cf226e3ceaad6e9f67ff933f9b0f24c48b57ad7116ab679f770dddcdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735495337&rft_id=info:pmid/38464362&rft_sage_id=10.1177_10943420221113513&rfr_iscdi=true |