Loading…
Photoinitiated Olefin Metathesis and Stereolithographic Printing of Polydicyclopentadiene
Recent progress in photoinitiated ring-opening metathesis polymerization (photoROMP) has enabled the lithographic production of patterned films from olefinic resins. Recently, we reported the use of a latent ruthenium catalyst (HeatMet) in combination with a photosensitizer (2-isopropylthioxanthone)...
Saved in:
Published in: | Macromolecules 2022-09, Vol.55 (18), p.8273-8282 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent progress in photoinitiated ring-opening metathesis polymerization (photoROMP) has enabled the lithographic production of patterned films from olefinic resins. Recently, we reported the use of a latent ruthenium catalyst (HeatMet) in combination with a photosensitizer (2-isopropylthioxanthone) to rapidly photopolymerize dicyclopentadiene (DCPD) formulations upon irradiation with UV light. While this prior work was limited in terms of catalyst and photosensitizer scope, a variety of alternative catalysts and photosensitizers are commercially available that could allow for tuning of thermomechanical properties, potlifes, activation rates, and irradiation wavelengths. Herein, 14 catalysts and 8 photosensitizers are surveyed for the photoROMP of DCPD and the structure–activity relationships of the catalysts examined. Properties relevant to stereolithography additive manufacturing (SLA AM)potlife, irradiation dose required to gel, conversionare characterized to develop catalyst and photosensitizer libraries to inform development of SLA AM resin systems. Two optimized catalyst/photosensitizer systems are demonstrated in the rapid SLA printing of complex, multidimensional pDCPD structures with microscale features under ambient conditions. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.2c01244 |