Loading…

A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles

This work applies a new combination of techniques for the fully resolved simulation of compressible, gas–particle multiphase flows. The adaptive wavelet collocation method is used to dynamically, and efficiently, adapt the computational grid to localized flow features and the particles. A characteri...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids 2022-11, Vol.248, p.105670, Article 105670
Main Authors: Mehta, Y., Goetsch, R.J., Vasilyev, O.V., Regele, J.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3
cites cdi_FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3
container_end_page
container_issue
container_start_page 105670
container_title Computers & fluids
container_volume 248
creator Mehta, Y.
Goetsch, R.J.
Vasilyev, O.V.
Regele, J.D.
description This work applies a new combination of techniques for the fully resolved simulation of compressible, gas–particle multiphase flows. The adaptive wavelet collocation method is used to dynamically, and efficiently, adapt the computational grid to localized flow features and the particles. A characteristic-based volume penalization method that imposes arbitrary Dirichlet, Neumann, or Robin-type immersed boundary conditions, is used to enforce the no-slip condition at particle surfaces. A hard-sphere collision model is applied to capture the particle–particle collisions. Proof of concept test cases are presented, showcasing the dynamic grid adaptation and fully resolved two-way coupling between the phases that is possible with this approach. Results for a shock-driven single cylinder under viscous and inviscid conditions are presented along with a demonstration of a shock interacting with a cloud of randomly distributed cylinders and spheres. •Parallel Adaptive Wavelet Collocation Method to simulate shock-particle interaction.•Hard-sphere collision model to resolve particle-particle and particle-wall collisions.•Numerical validation of motion of a cylinder under shock-wave loading.•A demonstration of moving, colliding spheres and shock-driven cylinders.
doi_str_mv 10.1016/j.compfluid.2022.105670
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1890982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793022002638</els_id><sourcerecordid>S0045793022002638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMI3YHEmxXYWx8eqYpMqcYGz5dgT4pLEke0W9e9JCOqV02xv0TyEbilZUUKLh91Ku26o2701K0YYG7d5wckZWtCSi4TwjJ-jBSFZnnCRkkt0FcKOjHPKsgXq13hQPlrdAvYQXHsAg4Pt9q2K1vVYDYN3Sje4dh6HuDdH23_i0Dj9hW0fwSs94QL-trHBnTuM53usXdta84t0Y3OyCNfoolZtgJu_ukQfT4_vm5dk-_b8ullvE50KGhOV8dzoQmRlzcGUQqcqrSqhgDFDS1aIOiMCClXwjFSCKi5qY3IoMiaqNDdVukR3s64L0cqgbQTdaNf3oKOkpSCiZCOIzyDtXQgeajl42yl_lJTIKVu5k6ds5ZStnLMdmeuZCeMPBwt-soBeg7F-cjDO_qvxAxqGico</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles</title><source>Elsevier</source><creator>Mehta, Y. ; Goetsch, R.J. ; Vasilyev, O.V. ; Regele, J.D.</creator><creatorcontrib>Mehta, Y. ; Goetsch, R.J. ; Vasilyev, O.V. ; Regele, J.D. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>This work applies a new combination of techniques for the fully resolved simulation of compressible, gas–particle multiphase flows. The adaptive wavelet collocation method is used to dynamically, and efficiently, adapt the computational grid to localized flow features and the particles. A characteristic-based volume penalization method that imposes arbitrary Dirichlet, Neumann, or Robin-type immersed boundary conditions, is used to enforce the no-slip condition at particle surfaces. A hard-sphere collision model is applied to capture the particle–particle collisions. Proof of concept test cases are presented, showcasing the dynamic grid adaptation and fully resolved two-way coupling between the phases that is possible with this approach. Results for a shock-driven single cylinder under viscous and inviscid conditions are presented along with a demonstration of a shock interacting with a cloud of randomly distributed cylinders and spheres. •Parallel Adaptive Wavelet Collocation Method to simulate shock-particle interaction.•Hard-sphere collision model to resolve particle-particle and particle-wall collisions.•Numerical validation of motion of a cylinder under shock-wave loading.•A demonstration of moving, colliding spheres and shock-driven cylinders.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2022.105670</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Characteristic based volume penalization ; ENGINEERING ; Immersed boundary ; Multiphase-Flows ; Particle resolved direct numerical simulations ; Shock-particle ; Shock-particle interaction</subject><ispartof>Computers &amp; fluids, 2022-11, Vol.248, p.105670, Article 105670</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3</citedby><cites>FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3</cites><orcidid>0000-0002-2032-3435 ; 0000000220323435 ; 000000023643536X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1890982$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehta, Y.</creatorcontrib><creatorcontrib>Goetsch, R.J.</creatorcontrib><creatorcontrib>Vasilyev, O.V.</creatorcontrib><creatorcontrib>Regele, J.D.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles</title><title>Computers &amp; fluids</title><description>This work applies a new combination of techniques for the fully resolved simulation of compressible, gas–particle multiphase flows. The adaptive wavelet collocation method is used to dynamically, and efficiently, adapt the computational grid to localized flow features and the particles. A characteristic-based volume penalization method that imposes arbitrary Dirichlet, Neumann, or Robin-type immersed boundary conditions, is used to enforce the no-slip condition at particle surfaces. A hard-sphere collision model is applied to capture the particle–particle collisions. Proof of concept test cases are presented, showcasing the dynamic grid adaptation and fully resolved two-way coupling between the phases that is possible with this approach. Results for a shock-driven single cylinder under viscous and inviscid conditions are presented along with a demonstration of a shock interacting with a cloud of randomly distributed cylinders and spheres. •Parallel Adaptive Wavelet Collocation Method to simulate shock-particle interaction.•Hard-sphere collision model to resolve particle-particle and particle-wall collisions.•Numerical validation of motion of a cylinder under shock-wave loading.•A demonstration of moving, colliding spheres and shock-driven cylinders.</description><subject>Characteristic based volume penalization</subject><subject>ENGINEERING</subject><subject>Immersed boundary</subject><subject>Multiphase-Flows</subject><subject>Particle resolved direct numerical simulations</subject><subject>Shock-particle</subject><subject>Shock-particle interaction</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMI3YHEmxXYWx8eqYpMqcYGz5dgT4pLEke0W9e9JCOqV02xv0TyEbilZUUKLh91Ku26o2701K0YYG7d5wckZWtCSi4TwjJ-jBSFZnnCRkkt0FcKOjHPKsgXq13hQPlrdAvYQXHsAg4Pt9q2K1vVYDYN3Sje4dh6HuDdH23_i0Dj9hW0fwSs94QL-trHBnTuM53usXdta84t0Y3OyCNfoolZtgJu_ukQfT4_vm5dk-_b8ullvE50KGhOV8dzoQmRlzcGUQqcqrSqhgDFDS1aIOiMCClXwjFSCKi5qY3IoMiaqNDdVukR3s64L0cqgbQTdaNf3oKOkpSCiZCOIzyDtXQgeajl42yl_lJTIKVu5k6ds5ZStnLMdmeuZCeMPBwt-soBeg7F-cjDO_qvxAxqGico</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Mehta, Y.</creator><creator>Goetsch, R.J.</creator><creator>Vasilyev, O.V.</creator><creator>Regele, J.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2032-3435</orcidid><orcidid>https://orcid.org/0000000220323435</orcidid><orcidid>https://orcid.org/000000023643536X</orcidid></search><sort><creationdate>20221115</creationdate><title>A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles</title><author>Mehta, Y. ; Goetsch, R.J. ; Vasilyev, O.V. ; Regele, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characteristic based volume penalization</topic><topic>ENGINEERING</topic><topic>Immersed boundary</topic><topic>Multiphase-Flows</topic><topic>Particle resolved direct numerical simulations</topic><topic>Shock-particle</topic><topic>Shock-particle interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Y.</creatorcontrib><creatorcontrib>Goetsch, R.J.</creatorcontrib><creatorcontrib>Vasilyev, O.V.</creatorcontrib><creatorcontrib>Regele, J.D.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Y.</au><au>Goetsch, R.J.</au><au>Vasilyev, O.V.</au><au>Regele, J.D.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles</atitle><jtitle>Computers &amp; fluids</jtitle><date>2022-11-15</date><risdate>2022</risdate><volume>248</volume><spage>105670</spage><pages>105670-</pages><artnum>105670</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>This work applies a new combination of techniques for the fully resolved simulation of compressible, gas–particle multiphase flows. The adaptive wavelet collocation method is used to dynamically, and efficiently, adapt the computational grid to localized flow features and the particles. A characteristic-based volume penalization method that imposes arbitrary Dirichlet, Neumann, or Robin-type immersed boundary conditions, is used to enforce the no-slip condition at particle surfaces. A hard-sphere collision model is applied to capture the particle–particle collisions. Proof of concept test cases are presented, showcasing the dynamic grid adaptation and fully resolved two-way coupling between the phases that is possible with this approach. Results for a shock-driven single cylinder under viscous and inviscid conditions are presented along with a demonstration of a shock interacting with a cloud of randomly distributed cylinders and spheres. •Parallel Adaptive Wavelet Collocation Method to simulate shock-particle interaction.•Hard-sphere collision model to resolve particle-particle and particle-wall collisions.•Numerical validation of motion of a cylinder under shock-wave loading.•A demonstration of moving, colliding spheres and shock-driven cylinders.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2022.105670</doi><orcidid>https://orcid.org/0000-0002-2032-3435</orcidid><orcidid>https://orcid.org/0000000220323435</orcidid><orcidid>https://orcid.org/000000023643536X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2022-11, Vol.248, p.105670, Article 105670
issn 0045-7930
1879-0747
language eng
recordid cdi_osti_scitechconnect_1890982
source Elsevier
subjects Characteristic based volume penalization
ENGINEERING
Immersed boundary
Multiphase-Flows
Particle resolved direct numerical simulations
Shock-particle
Shock-particle interaction
title A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particle%20resolved%20simulation%20approach%20for%20studying%20shock%20interactions%20with%20moving,%20colliding%20solid%20particles&rft.jtitle=Computers%20&%20fluids&rft.au=Mehta,%20Y.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-11-15&rft.volume=248&rft.spage=105670&rft.pages=105670-&rft.artnum=105670&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2022.105670&rft_dat=%3Celsevier_osti_%3ES0045793022002638%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-a475dc6948f7ed89c3a3bb9ae22d18269f409e6a6740b91a79fdd5e6429b35db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true