Loading…
High Throughput Data-Driven Design of Laser-Crystallized 2D MoS2 Chemical Sensors: A Demonstration for NO2 Detection
High throughput characterization and processing techniques are becoming increasingly necessary to navigate multivariable, data-driven design challenges for sensors and electronic devices. For two-dimensional materials, device performance is highly dependent upon a vast array of material properties i...
Saved in:
Published in: | ACS applied nano materials 2022-05, Vol.5 (5), p.7549-7561 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7561 |
container_issue | 5 |
container_start_page | 7549 |
container_title | ACS applied nano materials |
container_volume | 5 |
creator | Austin, Drake Miesle, Paige Sessions, Deanna Motala, Michael Moore, David C. Beyer, Griffin Miesle, Adam Sarangan, Andrew Sebastian, Amritanand Das, Saptarshi Puthirath, Anand B. Zhang, Xiang Hachtel, Jordan Ajayan, Pulickel M. Back, Tyson Stevenson, Peter R. Brothers, Michael Kim, Steve S. Buskohl, Philip Rao, Rahul Muratore, Christopher Glavin, Nicholas R. |
description | High throughput characterization and processing techniques are becoming increasingly necessary to navigate multivariable, data-driven design challenges for sensors and electronic devices. For two-dimensional materials, device performance is highly dependent upon a vast array of material properties including the number of layers, lattice strain, carrier concentration, defect density, and grain structure. In this work, laser crystallization was used to locally pattern and transform hundreds of regions of amorphous MoS2 thin films into 2D 2H-MoS2. A high throughput Raman spectroscopy approach was subsequently used to assess the process-dependent structural and compositional variations for each illuminated region, yielding over 6000 distinct nonresonant, resonant, and polarized Raman spectra. The rapid generation of a comprehensive library of structural and compositional data elucidated important trends between structure–property processing relationships involving laser-crystallized MoS2, including the relationships between grain size, grain orientation, and intrinsic strain. Moreover, extensive analysis of structure/property relationships allowed for intelligent design and evaluation of major contributions to device performance in MoS2 chemical sensors. In particular, it is found that NO2 sensor performance is strongly dependent on the orientation of the MoS2 grains relative to the crystal plane. |
doi_str_mv | 10.1021/acsanm.2c01614 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1891395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a87821130</sourcerecordid><originalsourceid>FETCH-LOGICAL-a187t-15eae244785c9c6615fc3af9aef07efb40f3e46925a11de88cc2c4c9596455f83</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWGqvnoNHYWsmm-xuvJVdtUK1h9bzEtOkm7JNJEkF_fVuaQ-eZni8N_P4ELoFMgVC4UGqKN1-ShWBAtgFGlFesoyIklz-26_RJMYdIQQEFDkhI5TmdtvhdRf8Ydt9HRJuZJJZE-y3drjR0W4d9gYvZNQhq8NPTLLv7a_eYNrgN7-iuO703irZ45V20Yf4iGdDcO9dTEEm6x02PuD3JR3UpNVRuUFXRvZRT85zjD6en9b1PFssX17r2SKTUJUpA66lpoyVFVdCFQVwo3JphNSGlNp8MmJyzQpBuQTY6KpSiiqmBBcF49xU-Rjdne76mGwblR3-d8o7N9RooRKQCz6Y7k-mAWG784fghkotkPbItT1xbc9c8z-kLGvX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Throughput Data-Driven Design of Laser-Crystallized 2D MoS2 Chemical Sensors: A Demonstration for NO2 Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Austin, Drake ; Miesle, Paige ; Sessions, Deanna ; Motala, Michael ; Moore, David C. ; Beyer, Griffin ; Miesle, Adam ; Sarangan, Andrew ; Sebastian, Amritanand ; Das, Saptarshi ; Puthirath, Anand B. ; Zhang, Xiang ; Hachtel, Jordan ; Ajayan, Pulickel M. ; Back, Tyson ; Stevenson, Peter R. ; Brothers, Michael ; Kim, Steve S. ; Buskohl, Philip ; Rao, Rahul ; Muratore, Christopher ; Glavin, Nicholas R.</creator><creatorcontrib>Austin, Drake ; Miesle, Paige ; Sessions, Deanna ; Motala, Michael ; Moore, David C. ; Beyer, Griffin ; Miesle, Adam ; Sarangan, Andrew ; Sebastian, Amritanand ; Das, Saptarshi ; Puthirath, Anand B. ; Zhang, Xiang ; Hachtel, Jordan ; Ajayan, Pulickel M. ; Back, Tyson ; Stevenson, Peter R. ; Brothers, Michael ; Kim, Steve S. ; Buskohl, Philip ; Rao, Rahul ; Muratore, Christopher ; Glavin, Nicholas R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>High throughput characterization and processing techniques are becoming increasingly necessary to navigate multivariable, data-driven design challenges for sensors and electronic devices. For two-dimensional materials, device performance is highly dependent upon a vast array of material properties including the number of layers, lattice strain, carrier concentration, defect density, and grain structure. In this work, laser crystallization was used to locally pattern and transform hundreds of regions of amorphous MoS2 thin films into 2D 2H-MoS2. A high throughput Raman spectroscopy approach was subsequently used to assess the process-dependent structural and compositional variations for each illuminated region, yielding over 6000 distinct nonresonant, resonant, and polarized Raman spectra. The rapid generation of a comprehensive library of structural and compositional data elucidated important trends between structure–property processing relationships involving laser-crystallized MoS2, including the relationships between grain size, grain orientation, and intrinsic strain. Moreover, extensive analysis of structure/property relationships allowed for intelligent design and evaluation of major contributions to device performance in MoS2 chemical sensors. In particular, it is found that NO2 sensor performance is strongly dependent on the orientation of the MoS2 grains relative to the crystal plane.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.2c01614</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>disulfide ; few-layer ; high-throughput characterization ; laser-induced crystallization ; MATERIALS SCIENCE ; molybdenum ; Raman ; UMAP</subject><ispartof>ACS applied nano materials, 2022-05, Vol.5 (5), p.7549-7561</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9447-7509 ; 0000-0002-8239-2399 ; 0000-0001-8323-7860 ; 0000-0002-5555-9261 ; 0000-0003-3731-1630 ; 0000-0003-4004-5185 ; 0000-0002-9519-077X ; 0000-0002-0188-945X ; 0000000337311630 ; 000000029519077X ; 0000000183237860 ; 0000000340045185 ; 000000020188945X ; 0000000282392399 ; 0000000297280920 ; 0000000255559261 ; 0000000294477509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1891395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Austin, Drake</creatorcontrib><creatorcontrib>Miesle, Paige</creatorcontrib><creatorcontrib>Sessions, Deanna</creatorcontrib><creatorcontrib>Motala, Michael</creatorcontrib><creatorcontrib>Moore, David C.</creatorcontrib><creatorcontrib>Beyer, Griffin</creatorcontrib><creatorcontrib>Miesle, Adam</creatorcontrib><creatorcontrib>Sarangan, Andrew</creatorcontrib><creatorcontrib>Sebastian, Amritanand</creatorcontrib><creatorcontrib>Das, Saptarshi</creatorcontrib><creatorcontrib>Puthirath, Anand B.</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Hachtel, Jordan</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><creatorcontrib>Back, Tyson</creatorcontrib><creatorcontrib>Stevenson, Peter R.</creatorcontrib><creatorcontrib>Brothers, Michael</creatorcontrib><creatorcontrib>Kim, Steve S.</creatorcontrib><creatorcontrib>Buskohl, Philip</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Muratore, Christopher</creatorcontrib><creatorcontrib>Glavin, Nicholas R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>High Throughput Data-Driven Design of Laser-Crystallized 2D MoS2 Chemical Sensors: A Demonstration for NO2 Detection</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>High throughput characterization and processing techniques are becoming increasingly necessary to navigate multivariable, data-driven design challenges for sensors and electronic devices. For two-dimensional materials, device performance is highly dependent upon a vast array of material properties including the number of layers, lattice strain, carrier concentration, defect density, and grain structure. In this work, laser crystallization was used to locally pattern and transform hundreds of regions of amorphous MoS2 thin films into 2D 2H-MoS2. A high throughput Raman spectroscopy approach was subsequently used to assess the process-dependent structural and compositional variations for each illuminated region, yielding over 6000 distinct nonresonant, resonant, and polarized Raman spectra. The rapid generation of a comprehensive library of structural and compositional data elucidated important trends between structure–property processing relationships involving laser-crystallized MoS2, including the relationships between grain size, grain orientation, and intrinsic strain. Moreover, extensive analysis of structure/property relationships allowed for intelligent design and evaluation of major contributions to device performance in MoS2 chemical sensors. In particular, it is found that NO2 sensor performance is strongly dependent on the orientation of the MoS2 grains relative to the crystal plane.</description><subject>disulfide</subject><subject>few-layer</subject><subject>high-throughput characterization</subject><subject>laser-induced crystallization</subject><subject>MATERIALS SCIENCE</subject><subject>molybdenum</subject><subject>Raman</subject><subject>UMAP</subject><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWGqvnoNHYWsmm-xuvJVdtUK1h9bzEtOkm7JNJEkF_fVuaQ-eZni8N_P4ELoFMgVC4UGqKN1-ShWBAtgFGlFesoyIklz-26_RJMYdIQQEFDkhI5TmdtvhdRf8Ydt9HRJuZJJZE-y3drjR0W4d9gYvZNQhq8NPTLLv7a_eYNrgN7-iuO703irZ45V20Yf4iGdDcO9dTEEm6x02PuD3JR3UpNVRuUFXRvZRT85zjD6en9b1PFssX17r2SKTUJUpA66lpoyVFVdCFQVwo3JphNSGlNp8MmJyzQpBuQTY6KpSiiqmBBcF49xU-Rjdne76mGwblR3-d8o7N9RooRKQCz6Y7k-mAWG784fghkotkPbItT1xbc9c8z-kLGvX</recordid><startdate>20220527</startdate><enddate>20220527</enddate><creator>Austin, Drake</creator><creator>Miesle, Paige</creator><creator>Sessions, Deanna</creator><creator>Motala, Michael</creator><creator>Moore, David C.</creator><creator>Beyer, Griffin</creator><creator>Miesle, Adam</creator><creator>Sarangan, Andrew</creator><creator>Sebastian, Amritanand</creator><creator>Das, Saptarshi</creator><creator>Puthirath, Anand B.</creator><creator>Zhang, Xiang</creator><creator>Hachtel, Jordan</creator><creator>Ajayan, Pulickel M.</creator><creator>Back, Tyson</creator><creator>Stevenson, Peter R.</creator><creator>Brothers, Michael</creator><creator>Kim, Steve S.</creator><creator>Buskohl, Philip</creator><creator>Rao, Rahul</creator><creator>Muratore, Christopher</creator><creator>Glavin, Nicholas R.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9447-7509</orcidid><orcidid>https://orcid.org/0000-0002-8239-2399</orcidid><orcidid>https://orcid.org/0000-0001-8323-7860</orcidid><orcidid>https://orcid.org/0000-0002-5555-9261</orcidid><orcidid>https://orcid.org/0000-0003-3731-1630</orcidid><orcidid>https://orcid.org/0000-0003-4004-5185</orcidid><orcidid>https://orcid.org/0000-0002-9519-077X</orcidid><orcidid>https://orcid.org/0000-0002-0188-945X</orcidid><orcidid>https://orcid.org/0000000337311630</orcidid><orcidid>https://orcid.org/000000029519077X</orcidid><orcidid>https://orcid.org/0000000183237860</orcidid><orcidid>https://orcid.org/0000000340045185</orcidid><orcidid>https://orcid.org/000000020188945X</orcidid><orcidid>https://orcid.org/0000000282392399</orcidid><orcidid>https://orcid.org/0000000297280920</orcidid><orcidid>https://orcid.org/0000000255559261</orcidid><orcidid>https://orcid.org/0000000294477509</orcidid></search><sort><creationdate>20220527</creationdate><title>High Throughput Data-Driven Design of Laser-Crystallized 2D MoS2 Chemical Sensors: A Demonstration for NO2 Detection</title><author>Austin, Drake ; Miesle, Paige ; Sessions, Deanna ; Motala, Michael ; Moore, David C. ; Beyer, Griffin ; Miesle, Adam ; Sarangan, Andrew ; Sebastian, Amritanand ; Das, Saptarshi ; Puthirath, Anand B. ; Zhang, Xiang ; Hachtel, Jordan ; Ajayan, Pulickel M. ; Back, Tyson ; Stevenson, Peter R. ; Brothers, Michael ; Kim, Steve S. ; Buskohl, Philip ; Rao, Rahul ; Muratore, Christopher ; Glavin, Nicholas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a187t-15eae244785c9c6615fc3af9aef07efb40f3e46925a11de88cc2c4c9596455f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>disulfide</topic><topic>few-layer</topic><topic>high-throughput characterization</topic><topic>laser-induced crystallization</topic><topic>MATERIALS SCIENCE</topic><topic>molybdenum</topic><topic>Raman</topic><topic>UMAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Drake</creatorcontrib><creatorcontrib>Miesle, Paige</creatorcontrib><creatorcontrib>Sessions, Deanna</creatorcontrib><creatorcontrib>Motala, Michael</creatorcontrib><creatorcontrib>Moore, David C.</creatorcontrib><creatorcontrib>Beyer, Griffin</creatorcontrib><creatorcontrib>Miesle, Adam</creatorcontrib><creatorcontrib>Sarangan, Andrew</creatorcontrib><creatorcontrib>Sebastian, Amritanand</creatorcontrib><creatorcontrib>Das, Saptarshi</creatorcontrib><creatorcontrib>Puthirath, Anand B.</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Hachtel, Jordan</creatorcontrib><creatorcontrib>Ajayan, Pulickel M.</creatorcontrib><creatorcontrib>Back, Tyson</creatorcontrib><creatorcontrib>Stevenson, Peter R.</creatorcontrib><creatorcontrib>Brothers, Michael</creatorcontrib><creatorcontrib>Kim, Steve S.</creatorcontrib><creatorcontrib>Buskohl, Philip</creatorcontrib><creatorcontrib>Rao, Rahul</creatorcontrib><creatorcontrib>Muratore, Christopher</creatorcontrib><creatorcontrib>Glavin, Nicholas R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin, Drake</au><au>Miesle, Paige</au><au>Sessions, Deanna</au><au>Motala, Michael</au><au>Moore, David C.</au><au>Beyer, Griffin</au><au>Miesle, Adam</au><au>Sarangan, Andrew</au><au>Sebastian, Amritanand</au><au>Das, Saptarshi</au><au>Puthirath, Anand B.</au><au>Zhang, Xiang</au><au>Hachtel, Jordan</au><au>Ajayan, Pulickel M.</au><au>Back, Tyson</au><au>Stevenson, Peter R.</au><au>Brothers, Michael</au><au>Kim, Steve S.</au><au>Buskohl, Philip</au><au>Rao, Rahul</au><au>Muratore, Christopher</au><au>Glavin, Nicholas R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Throughput Data-Driven Design of Laser-Crystallized 2D MoS2 Chemical Sensors: A Demonstration for NO2 Detection</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2022-05-27</date><risdate>2022</risdate><volume>5</volume><issue>5</issue><spage>7549</spage><epage>7561</epage><pages>7549-7561</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>High throughput characterization and processing techniques are becoming increasingly necessary to navigate multivariable, data-driven design challenges for sensors and electronic devices. For two-dimensional materials, device performance is highly dependent upon a vast array of material properties including the number of layers, lattice strain, carrier concentration, defect density, and grain structure. In this work, laser crystallization was used to locally pattern and transform hundreds of regions of amorphous MoS2 thin films into 2D 2H-MoS2. A high throughput Raman spectroscopy approach was subsequently used to assess the process-dependent structural and compositional variations for each illuminated region, yielding over 6000 distinct nonresonant, resonant, and polarized Raman spectra. The rapid generation of a comprehensive library of structural and compositional data elucidated important trends between structure–property processing relationships involving laser-crystallized MoS2, including the relationships between grain size, grain orientation, and intrinsic strain. Moreover, extensive analysis of structure/property relationships allowed for intelligent design and evaluation of major contributions to device performance in MoS2 chemical sensors. In particular, it is found that NO2 sensor performance is strongly dependent on the orientation of the MoS2 grains relative to the crystal plane.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsanm.2c01614</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9447-7509</orcidid><orcidid>https://orcid.org/0000-0002-8239-2399</orcidid><orcidid>https://orcid.org/0000-0001-8323-7860</orcidid><orcidid>https://orcid.org/0000-0002-5555-9261</orcidid><orcidid>https://orcid.org/0000-0003-3731-1630</orcidid><orcidid>https://orcid.org/0000-0003-4004-5185</orcidid><orcidid>https://orcid.org/0000-0002-9519-077X</orcidid><orcidid>https://orcid.org/0000-0002-0188-945X</orcidid><orcidid>https://orcid.org/0000000337311630</orcidid><orcidid>https://orcid.org/000000029519077X</orcidid><orcidid>https://orcid.org/0000000183237860</orcidid><orcidid>https://orcid.org/0000000340045185</orcidid><orcidid>https://orcid.org/000000020188945X</orcidid><orcidid>https://orcid.org/0000000282392399</orcidid><orcidid>https://orcid.org/0000000297280920</orcidid><orcidid>https://orcid.org/0000000255559261</orcidid><orcidid>https://orcid.org/0000000294477509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2022-05, Vol.5 (5), p.7549-7561 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_osti_scitechconnect_1891395 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | disulfide few-layer high-throughput characterization laser-induced crystallization MATERIALS SCIENCE molybdenum Raman UMAP |
title | High Throughput Data-Driven Design of Laser-Crystallized 2D MoS2 Chemical Sensors: A Demonstration for NO2 Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Throughput%20Data-Driven%20Design%20of%20Laser-Crystallized%202D%20MoS2%20Chemical%20Sensors:%20A%20Demonstration%20for%20NO2%20Detection&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Austin,%20Drake&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-05-27&rft.volume=5&rft.issue=5&rft.spage=7549&rft.epage=7561&rft.pages=7549-7561&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.2c01614&rft_dat=%3Cacs_osti_%3Ea87821130%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a187t-15eae244785c9c6615fc3af9aef07efb40f3e46925a11de88cc2c4c9596455f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |