Loading…
Fused x-ray and fast neutron CT reconstruction for imaging large and dense objects
Megavolt x-ray computed tomography (CT) is a powerful tool for three-dimensional characterization. However, its utility is limited for large objects composed of high-atomic number (Z) materials, where x rays fail to penetrate. Information from fast neutron CT (FNCT) can complement x-ray CT reconstru...
Saved in:
Published in: | Journal of applied physics 2022-10, Vol.132 (15) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Megavolt x-ray computed tomography (CT) is a powerful tool for three-dimensional characterization. However, its utility is limited for large objects composed of high-atomic number (Z) materials, where x rays fail to penetrate. Information from fast neutron CT (FNCT) can complement x-ray CT reconstructions since fast neutrons can more readily penetrate high-Z objects. Here, we demonstrate a method for combining FNCT and x-ray CT data to create a single reconstruction, more accurate than could be achieved with either x rays or fast neutrons alone. The algorithm was tested on an exemplar comprising multiple concentric, nested cylinders of different materials. Simulated and empirical x-ray CT data were acquired for the exemplar using a 9 MV bremsstrahlung spectrum. Additional simulated and empirical FNCT data were acquired using an accelerator based fast neutron source. The FNCT data were used to synthesize x-ray CT data and augment the x-ray CT data missing due to lack of penetration. This approach mitigates artifacts that would otherwise negatively affect the accuracy and resolution of a single-modality reconstructed volume. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0098960 |