Loading…
Effect of sucrose on the oxidation-reduction conditions and retention of rhenium during vitrification of low-activity waste
Technetium speciation and solubility during nuclear waste vitrification are affected by oxygen partial pressure in the melt. Thus, reducing agents such as sucrose, which are routinely added to nuclear waste feeds to repress foaming, can significantly affect the volatilization of Tc and increase its...
Saved in:
Published in: | Journal of nuclear materials 2023-01, Vol.573 (C), p.154155, Article 154155 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Technetium speciation and solubility during nuclear waste vitrification are affected by oxygen partial pressure in the melt. Thus, reducing agents such as sucrose, which are routinely added to nuclear waste feeds to repress foaming, can significantly affect the volatilization of Tc and increase its retention in glass. Using Re as a surrogate for Tc, we measured the effect of sucrose addition to two low-activity waste melter feeds on the Re retention, oxygen partial pressure, and iron redox as functions of temperature. As expected, Re retention in glass increased as the sucrose content increased. This is attributed to sucrose reaction with nitrates and nitrites in the feed. Destruction of nitrates and nitrites reduces the salt phase fraction and thus likely promotes Re diffusion into the glass-forming melt. In agreement with available literature, we discuss that a modest increase in the sucrose content (compared to current practice) can significantly improve the Tc retention without reducing Fe2+ to metal.
[Display omitted] |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2022.154155 |