Loading…
Dynamic Strength of Iron at High Pressures and Strain Rates
Accurate modeling of meteorite impacts, and deformation of planetary cores require characterization of the flow strength and in-elasticity of iron in its different phases. In this Letter, we investigate the flow strength of both the ambient α phase and high-pressure ε phase of iron at strain rates o...
Saved in:
Published in: | Physical review letters 2022-01, Vol.128 (1), p.015705-015705, Article 015705 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate modeling of meteorite impacts, and deformation of planetary cores require characterization of the flow strength and in-elasticity of iron in its different phases. In this Letter, we investigate the flow strength of both the ambient α phase and high-pressure ε phase of iron at strain rates of 1×10^{5} s^{-1} and pressures up to 42 GPa using high-pressure-pressure shear plate impact experiments. We report the strength of the ε iron to be significantly higher than α phase but consequently one order smaller than the previously reported dynamic strength at high pressures. The complete stress-strain response of the ε phase is reported for the first time. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.128.015705 |