Loading…
Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface
Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist...
Saved in:
Published in: | Applied physics reviews 2022-12, Vol.9 (4) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Applied physics reviews |
container_volume | 9 |
creator | Sharan, Abhishek Nardone, Marco Krasikov, Dmitry Singh, Nirpendra Lany, Stephan |
description | Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO
2
/CdTe heterojunctions without and with the addition of CdCl
2
, a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO
2
/CdTe interface is highly defective, we discover a unique two-dimensional CdCl
2
interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1902462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902462</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19024623</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMoWH_e4eJeTNpS6ChFcXOwu8T0hkbSpOTGoW9vRQdHp_MN3zkzlogqF2lVcDH_2Uu2InpwXvKyFAnzh-h7o6S1I8TOODAuYrByxABDJwlBB9-DNoEiDME4ZQaLBOjk_c0WNaqY6oA4qcr3PTp6BhkRru4CGezrtsFPVUuFG7bQ0hJuv1yz3enY1OfUUzQ3Uiai6pR3bqreRMWzoszyv04vYNpLug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sharan, Abhishek ; Nardone, Marco ; Krasikov, Dmitry ; Singh, Nirpendra ; Lany, Stephan</creator><creatorcontrib>Sharan, Abhishek ; Nardone, Marco ; Krasikov, Dmitry ; Singh, Nirpendra ; Lany, Stephan</creatorcontrib><description>Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO
2
/CdTe heterojunctions without and with the addition of CdCl
2
, a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO
2
/CdTe interface is highly defective, we discover a unique two-dimensional CdCl
2
interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.</description><identifier>ISSN: 1931-9401</identifier><identifier>EISSN: 1931-9401</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Applied physics reviews, 2022-12, Vol.9 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000180430403 ; 0000000281278885 ; 0000000263942199 ; 000000034410623X ; 0000000270909418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1902462$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharan, Abhishek</creatorcontrib><creatorcontrib>Nardone, Marco</creatorcontrib><creatorcontrib>Krasikov, Dmitry</creatorcontrib><creatorcontrib>Singh, Nirpendra</creatorcontrib><creatorcontrib>Lany, Stephan</creatorcontrib><title>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</title><title>Applied physics reviews</title><description>Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO
2
/CdTe heterojunctions without and with the addition of CdCl
2
, a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO
2
/CdTe interface is highly defective, we discover a unique two-dimensional CdCl
2
interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.</description><issn>1931-9401</issn><issn>1931-9401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjL0KwjAURoMoWH_e4eJeTNpS6ChFcXOwu8T0hkbSpOTGoW9vRQdHp_MN3zkzlogqF2lVcDH_2Uu2InpwXvKyFAnzh-h7o6S1I8TOODAuYrByxABDJwlBB9-DNoEiDME4ZQaLBOjk_c0WNaqY6oA4qcr3PTp6BhkRru4CGezrtsFPVUuFG7bQ0hJuv1yz3enY1OfUUzQ3Uiai6pR3bqreRMWzoszyv04vYNpLug</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sharan, Abhishek</creator><creator>Nardone, Marco</creator><creator>Krasikov, Dmitry</creator><creator>Singh, Nirpendra</creator><creator>Lany, Stephan</creator><general>American Institute of Physics</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000180430403</orcidid><orcidid>https://orcid.org/0000000281278885</orcidid><orcidid>https://orcid.org/0000000263942199</orcidid><orcidid>https://orcid.org/000000034410623X</orcidid><orcidid>https://orcid.org/0000000270909418</orcidid></search><sort><creationdate>20221201</creationdate><title>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</title><author>Sharan, Abhishek ; Nardone, Marco ; Krasikov, Dmitry ; Singh, Nirpendra ; Lany, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19024623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharan, Abhishek</creatorcontrib><creatorcontrib>Nardone, Marco</creatorcontrib><creatorcontrib>Krasikov, Dmitry</creatorcontrib><creatorcontrib>Singh, Nirpendra</creatorcontrib><creatorcontrib>Lany, Stephan</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Applied physics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharan, Abhishek</au><au>Nardone, Marco</au><au>Krasikov, Dmitry</au><au>Singh, Nirpendra</au><au>Lany, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</atitle><jtitle>Applied physics reviews</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><issn>1931-9401</issn><eissn>1931-9401</eissn><abstract>Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO
2
/CdTe heterojunctions without and with the addition of CdCl
2
, a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO
2
/CdTe interface is highly defective, we discover a unique two-dimensional CdCl
2
interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><orcidid>https://orcid.org/0000000180430403</orcidid><orcidid>https://orcid.org/0000000281278885</orcidid><orcidid>https://orcid.org/0000000263942199</orcidid><orcidid>https://orcid.org/000000034410623X</orcidid><orcidid>https://orcid.org/0000000270909418</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-9401 |
ispartof | Applied physics reviews, 2022-12, Vol.9 (4) |
issn | 1931-9401 1931-9401 |
language | eng |
recordid | cdi_osti_scitechconnect_1902462 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
title | Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20thin%20interlayer%20phase%20from%20first%20principles%20enables%20defect-free%20incommensurate%20SnO%202%20/CdTe%20interface&rft.jtitle=Applied%20physics%20reviews&rft.au=Sharan,%20Abhishek&rft.date=2022-12-01&rft.volume=9&rft.issue=4&rft.issn=1931-9401&rft.eissn=1931-9401&rft_id=info:doi/&rft_dat=%3Costi%3E1902462%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19024623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |