Loading…

Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface

Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics reviews 2022-12, Vol.9 (4)
Main Authors: Sharan, Abhishek, Nardone, Marco, Krasikov, Dmitry, Singh, Nirpendra, Lany, Stephan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page
container_title Applied physics reviews
container_volume 9
creator Sharan, Abhishek
Nardone, Marco
Krasikov, Dmitry
Singh, Nirpendra
Lany, Stephan
description Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO 2 /CdTe heterojunctions without and with the addition of CdCl 2 , a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO 2 /CdTe interface is highly defective, we discover a unique two-dimensional CdCl 2 interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1902462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902462</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19024623</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMoWH_e4eJeTNpS6ChFcXOwu8T0hkbSpOTGoW9vRQdHp_MN3zkzlogqF2lVcDH_2Uu2InpwXvKyFAnzh-h7o6S1I8TOODAuYrByxABDJwlBB9-DNoEiDME4ZQaLBOjk_c0WNaqY6oA4qcr3PTp6BhkRru4CGezrtsFPVUuFG7bQ0hJuv1yz3enY1OfUUzQ3Uiai6pR3bqreRMWzoszyv04vYNpLug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sharan, Abhishek ; Nardone, Marco ; Krasikov, Dmitry ; Singh, Nirpendra ; Lany, Stephan</creator><creatorcontrib>Sharan, Abhishek ; Nardone, Marco ; Krasikov, Dmitry ; Singh, Nirpendra ; Lany, Stephan</creatorcontrib><description>Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO 2 /CdTe heterojunctions without and with the addition of CdCl 2 , a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO 2 /CdTe interface is highly defective, we discover a unique two-dimensional CdCl 2 interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.</description><identifier>ISSN: 1931-9401</identifier><identifier>EISSN: 1931-9401</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Applied physics reviews, 2022-12, Vol.9 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000180430403 ; 0000000281278885 ; 0000000263942199 ; 000000034410623X ; 0000000270909418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1902462$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharan, Abhishek</creatorcontrib><creatorcontrib>Nardone, Marco</creatorcontrib><creatorcontrib>Krasikov, Dmitry</creatorcontrib><creatorcontrib>Singh, Nirpendra</creatorcontrib><creatorcontrib>Lany, Stephan</creatorcontrib><title>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</title><title>Applied physics reviews</title><description>Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO 2 /CdTe heterojunctions without and with the addition of CdCl 2 , a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO 2 /CdTe interface is highly defective, we discover a unique two-dimensional CdCl 2 interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.</description><issn>1931-9401</issn><issn>1931-9401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjL0KwjAURoMoWH_e4eJeTNpS6ChFcXOwu8T0hkbSpOTGoW9vRQdHp_MN3zkzlogqF2lVcDH_2Uu2InpwXvKyFAnzh-h7o6S1I8TOODAuYrByxABDJwlBB9-DNoEiDME4ZQaLBOjk_c0WNaqY6oA4qcr3PTp6BhkRru4CGezrtsFPVUuFG7bQ0hJuv1yz3enY1OfUUzQ3Uiai6pR3bqreRMWzoszyv04vYNpLug</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sharan, Abhishek</creator><creator>Nardone, Marco</creator><creator>Krasikov, Dmitry</creator><creator>Singh, Nirpendra</creator><creator>Lany, Stephan</creator><general>American Institute of Physics</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000180430403</orcidid><orcidid>https://orcid.org/0000000281278885</orcidid><orcidid>https://orcid.org/0000000263942199</orcidid><orcidid>https://orcid.org/000000034410623X</orcidid><orcidid>https://orcid.org/0000000270909418</orcidid></search><sort><creationdate>20221201</creationdate><title>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</title><author>Sharan, Abhishek ; Nardone, Marco ; Krasikov, Dmitry ; Singh, Nirpendra ; Lany, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19024623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharan, Abhishek</creatorcontrib><creatorcontrib>Nardone, Marco</creatorcontrib><creatorcontrib>Krasikov, Dmitry</creatorcontrib><creatorcontrib>Singh, Nirpendra</creatorcontrib><creatorcontrib>Lany, Stephan</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Applied physics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharan, Abhishek</au><au>Nardone, Marco</au><au>Krasikov, Dmitry</au><au>Singh, Nirpendra</au><au>Lany, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface</atitle><jtitle>Applied physics reviews</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><issn>1931-9401</issn><eissn>1931-9401</eissn><abstract>Advancing optoelectronic and emerging technologies increasingly requires control and design of interfaces between dissimilar materials. However, incommensurate interfaces are notoriously defective and rarely benefit from first-principles predictions, because no explicit atomic-structure models exist. Here, we adopt a bulk crystal structure prediction method to the interface geometry and apply it to SnO 2 /CdTe heterojunctions without and with the addition of CdCl 2 , a ubiquitous and beneficial, but abstruse processing step in CdTe photovoltaics. Whereas the direct SnO 2 /CdTe interface is highly defective, we discover a unique two-dimensional CdCl 2 interphase, unrelated to the respective bulk structure. It facilitates a seamless transition from the rutile to zincblende lattices and removes defect-states from the interface bandgap. Implementing the predicted interface electronic structure in device simulations, we demonstrate the theoretical feasibility of bufferless oxide-CdTe heterojunction solar cells approaching the Shockley–Queisser limit. Our results highlight the broader potential of designing atomically thin interlayers to enable defect-free incommensurate interfaces.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><orcidid>https://orcid.org/0000000180430403</orcidid><orcidid>https://orcid.org/0000000281278885</orcidid><orcidid>https://orcid.org/0000000263942199</orcidid><orcidid>https://orcid.org/000000034410623X</orcidid><orcidid>https://orcid.org/0000000270909418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-9401
ispartof Applied physics reviews, 2022-12, Vol.9 (4)
issn 1931-9401
1931-9401
language eng
recordid cdi_osti_scitechconnect_1902462
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Atomically thin interlayer phase from first principles enables defect-free incommensurate SnO 2 /CdTe interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20thin%20interlayer%20phase%20from%20first%20principles%20enables%20defect-free%20incommensurate%20SnO%202%20/CdTe%20interface&rft.jtitle=Applied%20physics%20reviews&rft.au=Sharan,%20Abhishek&rft.date=2022-12-01&rft.volume=9&rft.issue=4&rft.issn=1931-9401&rft.eissn=1931-9401&rft_id=info:doi/&rft_dat=%3Costi%3E1902462%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19024623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true