Loading…

Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions

Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-08, Vol.126 (31), p.5107-5125
Main Authors: Roy, Arpita, Diers, James R., Niedzwiedzki, Dariusz M., Meares, Adam, Yu, Zhanqian, Bhagavathy, Ganga Viswanathan, Satraitis, Andrius, Kirmaier, Christine, Ptaszek, Marcin, Bocian, David F., Holten, Dewey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13
cites cdi_FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13
container_end_page 5125
container_issue 31
container_start_page 5107
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 126
creator Roy, Arpita
Diers, James R.
Niedzwiedzki, Dariusz M.
Meares, Adam
Yu, Zhanqian
Bhagavathy, Ganga Viswanathan
Satraitis, Andrius
Kirmaier, Christine
Ptaszek, Marcin
Bocian, David F.
Holten, Dewey
description Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple–double–triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.
doi_str_mv 10.1021/acs.jpca.2c03114
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1905360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696863001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13</originalsourceid><addsrcrecordid>eNp1kc1O3DAUha2KSoUp-y6jrrpohms79iTLlg4_ElKRZlhbzo1DjIIdbEfqvAZPjIeBBYuujmV_5-heH0K-UVhSYPRMY1w-TKiXDIFTWn0ix1QwKAWj4iifoW5KIXnzhZzE-AAAlLPqmDzfDj75adhFi3osboOfTEjWxEK7rliPBlPwzmKxSWHGNAdT-L642nUZ9CH7gnXFn53uYrH-N9jWJuvu97DPsh2Cn--HcjNpNK-B7ze__cf0a5dM0Jisd_Er-dzrMZrTN12Qu4v19vyqvPl7eX3-66bUvGaprARgBRKk7lumm07UdMVpK1erllLdy5oxUXGOTWU6LkC3wrQtrRmssGsFUr4g3w-5PiarItpkcEDvXJ5K0QYEl5ChHwdoCv5pNjGpRxvRjKN2xs9RMdnIWvL9dy4IHFAMPsZgejUF-6jDTlFQ-45U7kjtO1JvHWXLz4Pl9cXPweWF_4-_ADfnl-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696863001</pqid></control><display><type>article</type><title>Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Roy, Arpita ; Diers, James R. ; Niedzwiedzki, Dariusz M. ; Meares, Adam ; Yu, Zhanqian ; Bhagavathy, Ganga Viswanathan ; Satraitis, Andrius ; Kirmaier, Christine ; Ptaszek, Marcin ; Bocian, David F. ; Holten, Dewey</creator><creatorcontrib>Roy, Arpita ; Diers, James R. ; Niedzwiedzki, Dariusz M. ; Meares, Adam ; Yu, Zhanqian ; Bhagavathy, Ganga Viswanathan ; Satraitis, Andrius ; Kirmaier, Christine ; Ptaszek, Marcin ; Bocian, David F. ; Holten, Dewey ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple–double–triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.2c03114</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters ; Aromatic compounds ; Energy ; Fluorescence ; Hydrocarbons ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Monomers</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2022-08, Vol.126 (31), p.5107-5125</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13</citedby><cites>FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13</cites><orcidid>0000-0003-1825-4546 ; 0000-0003-3639-6345 ; 0000-0002-0283-2578 ; 0000-0001-6468-6900 ; 0000-0002-1411-7846 ; 0000-0002-7357-2048 ; 0000-0002-1976-9296 ; 0000000318254546 ; 0000000164686900 ; 0000000202832578 ; 0000000214117846 ; 0000000219769296 ; 0000000273572048 ; 0000000336396345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1905360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Arpita</creatorcontrib><creatorcontrib>Diers, James R.</creatorcontrib><creatorcontrib>Niedzwiedzki, Dariusz M.</creatorcontrib><creatorcontrib>Meares, Adam</creatorcontrib><creatorcontrib>Yu, Zhanqian</creatorcontrib><creatorcontrib>Bhagavathy, Ganga Viswanathan</creatorcontrib><creatorcontrib>Satraitis, Andrius</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Ptaszek, Marcin</creatorcontrib><creatorcontrib>Bocian, David F.</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple–double–triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><subject>Aromatic compounds</subject><subject>Energy</subject><subject>Fluorescence</subject><subject>Hydrocarbons</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Monomers</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAUha2KSoUp-y6jrrpohms79iTLlg4_ElKRZlhbzo1DjIIdbEfqvAZPjIeBBYuujmV_5-heH0K-UVhSYPRMY1w-TKiXDIFTWn0ix1QwKAWj4iifoW5KIXnzhZzE-AAAlLPqmDzfDj75adhFi3osboOfTEjWxEK7rliPBlPwzmKxSWHGNAdT-L642nUZ9CH7gnXFn53uYrH-N9jWJuvu97DPsh2Cn--HcjNpNK-B7ze__cf0a5dM0Jisd_Er-dzrMZrTN12Qu4v19vyqvPl7eX3-66bUvGaprARgBRKk7lumm07UdMVpK1erllLdy5oxUXGOTWU6LkC3wrQtrRmssGsFUr4g3w-5PiarItpkcEDvXJ5K0QYEl5ChHwdoCv5pNjGpRxvRjKN2xs9RMdnIWvL9dy4IHFAMPsZgejUF-6jDTlFQ-45U7kjtO1JvHWXLz4Pl9cXPweWF_4-_ADfnl-s</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Roy, Arpita</creator><creator>Diers, James R.</creator><creator>Niedzwiedzki, Dariusz M.</creator><creator>Meares, Adam</creator><creator>Yu, Zhanqian</creator><creator>Bhagavathy, Ganga Viswanathan</creator><creator>Satraitis, Andrius</creator><creator>Kirmaier, Christine</creator><creator>Ptaszek, Marcin</creator><creator>Bocian, David F.</creator><creator>Holten, Dewey</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1825-4546</orcidid><orcidid>https://orcid.org/0000-0003-3639-6345</orcidid><orcidid>https://orcid.org/0000-0002-0283-2578</orcidid><orcidid>https://orcid.org/0000-0001-6468-6900</orcidid><orcidid>https://orcid.org/0000-0002-1411-7846</orcidid><orcidid>https://orcid.org/0000-0002-7357-2048</orcidid><orcidid>https://orcid.org/0000-0002-1976-9296</orcidid><orcidid>https://orcid.org/0000000318254546</orcidid><orcidid>https://orcid.org/0000000164686900</orcidid><orcidid>https://orcid.org/0000000202832578</orcidid><orcidid>https://orcid.org/0000000214117846</orcidid><orcidid>https://orcid.org/0000000219769296</orcidid><orcidid>https://orcid.org/0000000273572048</orcidid><orcidid>https://orcid.org/0000000336396345</orcidid></search><sort><creationdate>20220811</creationdate><title>Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions</title><author>Roy, Arpita ; Diers, James R. ; Niedzwiedzki, Dariusz M. ; Meares, Adam ; Yu, Zhanqian ; Bhagavathy, Ganga Viswanathan ; Satraitis, Andrius ; Kirmaier, Christine ; Ptaszek, Marcin ; Bocian, David F. ; Holten, Dewey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><topic>Aromatic compounds</topic><topic>Energy</topic><topic>Fluorescence</topic><topic>Hydrocarbons</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Monomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Arpita</creatorcontrib><creatorcontrib>Diers, James R.</creatorcontrib><creatorcontrib>Niedzwiedzki, Dariusz M.</creatorcontrib><creatorcontrib>Meares, Adam</creatorcontrib><creatorcontrib>Yu, Zhanqian</creatorcontrib><creatorcontrib>Bhagavathy, Ganga Viswanathan</creatorcontrib><creatorcontrib>Satraitis, Andrius</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Ptaszek, Marcin</creatorcontrib><creatorcontrib>Bocian, David F.</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Arpita</au><au>Diers, James R.</au><au>Niedzwiedzki, Dariusz M.</au><au>Meares, Adam</au><au>Yu, Zhanqian</au><au>Bhagavathy, Ganga Viswanathan</au><au>Satraitis, Andrius</au><au>Kirmaier, Christine</au><au>Ptaszek, Marcin</au><au>Bocian, David F.</au><au>Holten, Dewey</au><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2022-08-11</date><risdate>2022</risdate><volume>126</volume><issue>31</issue><spage>5107</spage><epage>5125</epage><pages>5107-5125</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple–double–triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.2c03114</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1825-4546</orcidid><orcidid>https://orcid.org/0000-0003-3639-6345</orcidid><orcidid>https://orcid.org/0000-0002-0283-2578</orcidid><orcidid>https://orcid.org/0000-0001-6468-6900</orcidid><orcidid>https://orcid.org/0000-0002-1411-7846</orcidid><orcidid>https://orcid.org/0000-0002-7357-2048</orcidid><orcidid>https://orcid.org/0000-0002-1976-9296</orcidid><orcidid>https://orcid.org/0000000318254546</orcidid><orcidid>https://orcid.org/0000000164686900</orcidid><orcidid>https://orcid.org/0000000202832578</orcidid><orcidid>https://orcid.org/0000000214117846</orcidid><orcidid>https://orcid.org/0000000219769296</orcidid><orcidid>https://orcid.org/0000000273572048</orcidid><orcidid>https://orcid.org/0000000336396345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2022-08, Vol.126 (31), p.5107-5125
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1905360
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
Aromatic compounds
Energy
Fluorescence
Hydrocarbons
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Monomers
title Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photophysical%20Properties%20and%20Electronic%20Structure%20of%20Hydroporphyrin%20Dyads%20Exhibiting%20Strong%20Through-Space%20and%20Through-Bond%20Electronic%20Interactions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Roy,%20Arpita&rft.aucorp=Washington%20Univ.,%20St.%20Louis,%20MO%20(United%20States)&rft.date=2022-08-11&rft.volume=126&rft.issue=31&rft.spage=5107&rft.epage=5125&rft.pages=5107-5125&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.2c03114&rft_dat=%3Cproquest_osti_%3E2696863001%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a382t-450c40606afb2a9d581731b677b11af68225433c94ed350ab5ebb18207cdb5c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696863001&rft_id=info:pmid/&rfr_iscdi=true