Loading…
Kinetic study of reaction C2H5 + HO2 in a photolysis reactor with time-resolved Faraday rotation spectroscopy
The rate constant and branching ratios of ethyl reaction with hydroperoxyl radical, C2H5 + HO2 (1), a key radical-radical reaction for intermediate temperature combustion chemistry, were measured in situ for the first time in a photolysis Herriott cell by using mid-IR Faraday rotation spectroscopy (...
Saved in:
Published in: | Proceedings of the Combustion Institute 2020-10, Vol.38 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rate constant and branching ratios of ethyl reaction with hydroperoxyl radical, C2H5 + HO2 (1), a key radical-radical reaction for intermediate temperature combustion chemistry, were measured in situ for the first time in a photolysis Herriott cell by using mid-IR Faraday rotation spectroscopy (FRS) and UV-IR direct absorption spectroscopy (DAS). The microsecond time-resolved diagnostic technique in this work enabled the direct rate measurements of the target reaction at 40 and 80 mbar and reduced the experimental uncertainty considerably. C2H5 and HO2 radicals were generated by the photolysis of (COCl)2/C2H5I/CH3OH/O2/He mixture at 266 nm. By direct measurements of the transient profiles of C2H5, HO2 and OH concentrations, the overall rate constant for this reaction at 297 K was determined as k1(40 mbar) = (3.8 ± 0.8) × 10–11 cm3 molecule–1 s–1 and k1(80 mbar) = (4.1 ± 1.0) × 10–11 cm3 molecule–1 s–1. As a result, the direct observation of hydroxyl radical (OH) indicated that OH formation channel was the major channel with a branching ratio of 0.8 ± 0.1. |
---|---|
ISSN: | 1540-7489 1873-2704 |