Loading…

Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy

The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2023-01, Vol.38 (1), p.165-178
Main Authors: Li, Wenxi, Sharma, Hemant, Kenesei, Peter, Ravi, Sidharth, Sehitoglu, Huseyin, Bucsek, Ashley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3
cites cdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3
container_end_page 178
container_issue 1
container_start_page 165
container_title Journal of materials research
container_volume 38
creator Li, Wenxi
Sharma, Hemant
Kenesei, Peter
Ravi, Sidharth
Sehitoglu, Huseyin
Bucsek, Ashley
description The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models. Graphical abstract
doi_str_mv 10.1557/s43578-022-00873-y
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1909310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774560370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</originalsourceid><addsrcrecordid>eNp9kc2L1TAUxYMo-Bz9B1wVXce5zUebLmXwCwYGRNchTZO-DH1JzU2FLvzfzbOCO1d3cX7ncA-HkNctvGul7G9RcNkrCoxRANVzuj8hJwZCUMlZ95ScQClB2dCK5-QF4iNAK6EXJ_Lrq8O0_AxxbkIs2czZxG0xucGSHWLjg1smrFqzLgZLsGZZ9mZyPuWLm5oSiolhuzQbXiPWVEOoT3bDKp7DfKYuujxXR_A-G1tCis0l2JzQpnV_SZ55s6B79ffekO8fP3y7-0zvHz59uXt_Ty0foNBp4p0AMJPsOz8yOwg1GSWNGYHXjkx5qUYphk4IZZiSbuyYANaBZKZ2HvkNeXPkplpBow3F2bNNMTpbdDvAwFuo0NsDWnP6sTks-jFtOda_NOt7ITvg_ZViB3XtgNl5veZwMXnXLejrFvrYQtct9J8t9F5N_DBhhePs8r_o_7h-A99uj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774560370</pqid></control><display><type>article</type><title>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</title><source>Springer Link</source><creator>Li, Wenxi ; Sharma, Hemant ; Kenesei, Peter ; Ravi, Sidharth ; Sehitoglu, Huseyin ; Bucsek, Ashley</creator><creatorcontrib>Li, Wenxi ; Sharma, Hemant ; Kenesei, Peter ; Ravi, Sidharth ; Sehitoglu, Huseyin ; Bucsek, Ashley ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00873-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>3D x-ray diffraction ; Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Deformation ; deformation twinning ; Grain boundaries ; grain boundary ; high-energy diffraction microscopy ; Inorganic Chemistry ; intragranular strain mapping ; Invited Feature Paper ; Materials Engineering ; Materials research ; MATERIALS SCIENCE ; Microscopy ; Nanotechnology ; Plastic deformation ; Polycrystals ; slip ; Stress concentration ; Stress distribution ; Synchrotron radiation ; Synchrotrons ; Titanium</subject><ispartof>Journal of materials research, 2023-01, Vol.38 (1), p.165-178</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</citedby><cites>FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1909310$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenxi</creatorcontrib><creatorcontrib>Sharma, Hemant</creatorcontrib><creatorcontrib>Kenesei, Peter</creatorcontrib><creatorcontrib>Ravi, Sidharth</creatorcontrib><creatorcontrib>Sehitoglu, Huseyin</creatorcontrib><creatorcontrib>Bucsek, Ashley</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models. Graphical abstract</description><subject>3D x-ray diffraction</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>deformation twinning</subject><subject>Grain boundaries</subject><subject>grain boundary</subject><subject>high-energy diffraction microscopy</subject><subject>Inorganic Chemistry</subject><subject>intragranular strain mapping</subject><subject>Invited Feature Paper</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Plastic deformation</subject><subject>Polycrystals</subject><subject>slip</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Titanium</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc2L1TAUxYMo-Bz9B1wVXce5zUebLmXwCwYGRNchTZO-DH1JzU2FLvzfzbOCO1d3cX7ncA-HkNctvGul7G9RcNkrCoxRANVzuj8hJwZCUMlZ95ScQClB2dCK5-QF4iNAK6EXJ_Lrq8O0_AxxbkIs2czZxG0xucGSHWLjg1smrFqzLgZLsGZZ9mZyPuWLm5oSiolhuzQbXiPWVEOoT3bDKp7DfKYuujxXR_A-G1tCis0l2JzQpnV_SZ55s6B79ffekO8fP3y7-0zvHz59uXt_Ty0foNBp4p0AMJPsOz8yOwg1GSWNGYHXjkx5qUYphk4IZZiSbuyYANaBZKZ2HvkNeXPkplpBow3F2bNNMTpbdDvAwFuo0NsDWnP6sTks-jFtOda_NOt7ITvg_ZViB3XtgNl5veZwMXnXLejrFvrYQtct9J8t9F5N_DBhhePs8r_o_7h-A99uj0w</recordid><startdate>20230114</startdate><enddate>20230114</enddate><creator>Li, Wenxi</creator><creator>Sharma, Hemant</creator><creator>Kenesei, Peter</creator><creator>Ravi, Sidharth</creator><creator>Sehitoglu, Huseyin</creator><creator>Bucsek, Ashley</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20230114</creationdate><title>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</title><author>Li, Wenxi ; Sharma, Hemant ; Kenesei, Peter ; Ravi, Sidharth ; Sehitoglu, Huseyin ; Bucsek, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D x-ray diffraction</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>deformation twinning</topic><topic>Grain boundaries</topic><topic>grain boundary</topic><topic>high-energy diffraction microscopy</topic><topic>Inorganic Chemistry</topic><topic>intragranular strain mapping</topic><topic>Invited Feature Paper</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Plastic deformation</topic><topic>Polycrystals</topic><topic>slip</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenxi</creatorcontrib><creatorcontrib>Sharma, Hemant</creatorcontrib><creatorcontrib>Kenesei, Peter</creatorcontrib><creatorcontrib>Ravi, Sidharth</creatorcontrib><creatorcontrib>Sehitoglu, Huseyin</creatorcontrib><creatorcontrib>Bucsek, Ashley</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenxi</au><au>Sharma, Hemant</au><au>Kenesei, Peter</au><au>Ravi, Sidharth</au><au>Sehitoglu, Huseyin</au><au>Bucsek, Ashley</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-01-14</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>165</spage><epage>178</epage><pages>165-178</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00873-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2023-01, Vol.38 (1), p.165-178
issn 0884-2914
2044-5326
language eng
recordid cdi_osti_scitechconnect_1909310
source Springer Link
subjects 3D x-ray diffraction
Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Deformation
deformation twinning
Grain boundaries
grain boundary
high-energy diffraction microscopy
Inorganic Chemistry
intragranular strain mapping
Invited Feature Paper
Materials Engineering
Materials research
MATERIALS SCIENCE
Microscopy
Nanotechnology
Plastic deformation
Polycrystals
slip
Stress concentration
Stress distribution
Synchrotron radiation
Synchrotrons
Titanium
title Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20intragranular%20stress%20fields%20in%20plastically%20deformed%20titanium%20using%20point-focused%20high-energy%20diffraction%20microscopy&rft.jtitle=Journal%20of%20materials%20research&rft.au=Li,%20Wenxi&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-01-14&rft.volume=38&rft.issue=1&rft.spage=165&rft.epage=178&rft.pages=165-178&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00873-y&rft_dat=%3Cproquest_osti_%3E2774560370%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774560370&rft_id=info:pmid/&rfr_iscdi=true