Loading…
Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy
The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation an...
Saved in:
Published in: | Journal of materials research 2023-01, Vol.38 (1), p.165-178 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3 |
container_end_page | 178 |
container_issue | 1 |
container_start_page | 165 |
container_title | Journal of materials research |
container_volume | 38 |
creator | Li, Wenxi Sharma, Hemant Kenesei, Peter Ravi, Sidharth Sehitoglu, Huseyin Bucsek, Ashley |
description | The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00873-y |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1909310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774560370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</originalsourceid><addsrcrecordid>eNp9kc2L1TAUxYMo-Bz9B1wVXce5zUebLmXwCwYGRNchTZO-DH1JzU2FLvzfzbOCO1d3cX7ncA-HkNctvGul7G9RcNkrCoxRANVzuj8hJwZCUMlZ95ScQClB2dCK5-QF4iNAK6EXJ_Lrq8O0_AxxbkIs2czZxG0xucGSHWLjg1smrFqzLgZLsGZZ9mZyPuWLm5oSiolhuzQbXiPWVEOoT3bDKp7DfKYuujxXR_A-G1tCis0l2JzQpnV_SZ55s6B79ffekO8fP3y7-0zvHz59uXt_Ty0foNBp4p0AMJPsOz8yOwg1GSWNGYHXjkx5qUYphk4IZZiSbuyYANaBZKZ2HvkNeXPkplpBow3F2bNNMTpbdDvAwFuo0NsDWnP6sTks-jFtOda_NOt7ITvg_ZViB3XtgNl5veZwMXnXLejrFvrYQtct9J8t9F5N_DBhhePs8r_o_7h-A99uj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774560370</pqid></control><display><type>article</type><title>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</title><source>Springer Link</source><creator>Li, Wenxi ; Sharma, Hemant ; Kenesei, Peter ; Ravi, Sidharth ; Sehitoglu, Huseyin ; Bucsek, Ashley</creator><creatorcontrib>Li, Wenxi ; Sharma, Hemant ; Kenesei, Peter ; Ravi, Sidharth ; Sehitoglu, Huseyin ; Bucsek, Ashley ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00873-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>3D x-ray diffraction ; Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Deformation ; deformation twinning ; Grain boundaries ; grain boundary ; high-energy diffraction microscopy ; Inorganic Chemistry ; intragranular strain mapping ; Invited Feature Paper ; Materials Engineering ; Materials research ; MATERIALS SCIENCE ; Microscopy ; Nanotechnology ; Plastic deformation ; Polycrystals ; slip ; Stress concentration ; Stress distribution ; Synchrotron radiation ; Synchrotrons ; Titanium</subject><ispartof>Journal of materials research, 2023-01, Vol.38 (1), p.165-178</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</citedby><cites>FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1909310$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenxi</creatorcontrib><creatorcontrib>Sharma, Hemant</creatorcontrib><creatorcontrib>Kenesei, Peter</creatorcontrib><creatorcontrib>Ravi, Sidharth</creatorcontrib><creatorcontrib>Sehitoglu, Huseyin</creatorcontrib><creatorcontrib>Bucsek, Ashley</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models.
Graphical abstract</description><subject>3D x-ray diffraction</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>deformation twinning</subject><subject>Grain boundaries</subject><subject>grain boundary</subject><subject>high-energy diffraction microscopy</subject><subject>Inorganic Chemistry</subject><subject>intragranular strain mapping</subject><subject>Invited Feature Paper</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Plastic deformation</subject><subject>Polycrystals</subject><subject>slip</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Titanium</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc2L1TAUxYMo-Bz9B1wVXce5zUebLmXwCwYGRNchTZO-DH1JzU2FLvzfzbOCO1d3cX7ncA-HkNctvGul7G9RcNkrCoxRANVzuj8hJwZCUMlZ95ScQClB2dCK5-QF4iNAK6EXJ_Lrq8O0_AxxbkIs2czZxG0xucGSHWLjg1smrFqzLgZLsGZZ9mZyPuWLm5oSiolhuzQbXiPWVEOoT3bDKp7DfKYuujxXR_A-G1tCis0l2JzQpnV_SZ55s6B79ffekO8fP3y7-0zvHz59uXt_Ty0foNBp4p0AMJPsOz8yOwg1GSWNGYHXjkx5qUYphk4IZZiSbuyYANaBZKZ2HvkNeXPkplpBow3F2bNNMTpbdDvAwFuo0NsDWnP6sTks-jFtOda_NOt7ITvg_ZViB3XtgNl5veZwMXnXLejrFvrYQtct9J8t9F5N_DBhhePs8r_o_7h-A99uj0w</recordid><startdate>20230114</startdate><enddate>20230114</enddate><creator>Li, Wenxi</creator><creator>Sharma, Hemant</creator><creator>Kenesei, Peter</creator><creator>Ravi, Sidharth</creator><creator>Sehitoglu, Huseyin</creator><creator>Bucsek, Ashley</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20230114</creationdate><title>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</title><author>Li, Wenxi ; Sharma, Hemant ; Kenesei, Peter ; Ravi, Sidharth ; Sehitoglu, Huseyin ; Bucsek, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D x-ray diffraction</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>deformation twinning</topic><topic>Grain boundaries</topic><topic>grain boundary</topic><topic>high-energy diffraction microscopy</topic><topic>Inorganic Chemistry</topic><topic>intragranular strain mapping</topic><topic>Invited Feature Paper</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Plastic deformation</topic><topic>Polycrystals</topic><topic>slip</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenxi</creatorcontrib><creatorcontrib>Sharma, Hemant</creatorcontrib><creatorcontrib>Kenesei, Peter</creatorcontrib><creatorcontrib>Ravi, Sidharth</creatorcontrib><creatorcontrib>Sehitoglu, Huseyin</creatorcontrib><creatorcontrib>Bucsek, Ashley</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenxi</au><au>Sharma, Hemant</au><au>Kenesei, Peter</au><au>Ravi, Sidharth</au><au>Sehitoglu, Huseyin</au><au>Bucsek, Ashley</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2023-01-14</date><risdate>2023</risdate><volume>38</volume><issue>1</issue><spage>165</spage><epage>178</epage><pages>165-178</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The response of a polycrystalline material to a mechanical load depends not only on the response of each individual grain, but also on the interaction with its neighbors. These interactions lead to local, intragranular stress concentrations that often dictate the initiation of plastic deformation and consequently the macroscopic stress–strain behavior. However, very few experimental studies have quantified intragranular stresses across bulk, three-dimensional volumes. In this work, a synchrotron X-ray diffraction technique called point-focused high-energy diffraction microscopy (pf-HEDM) is used to characterize intragranular deformation across a bulk, plastically deformed, polycrystalline titanium specimen. The results reveal the heterogenous stress distributions within individual grains and across grain boundaries, a stress concentration between a low and high Schmid factor grain pair, and a stress gradient near an extension twinning boundary. This work demonstrates the potential for the future use of pf-HEDM for understanding the local deformation associated with networks of grains and informing mesoscale models.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00873-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2023-01, Vol.38 (1), p.165-178 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1909310 |
source | Springer Link |
subjects | 3D x-ray diffraction Applied and Technical Physics Biomaterials Chemistry and Materials Science Deformation deformation twinning Grain boundaries grain boundary high-energy diffraction microscopy Inorganic Chemistry intragranular strain mapping Invited Feature Paper Materials Engineering Materials research MATERIALS SCIENCE Microscopy Nanotechnology Plastic deformation Polycrystals slip Stress concentration Stress distribution Synchrotron radiation Synchrotrons Titanium |
title | Resolving intragranular stress fields in plastically deformed titanium using point-focused high-energy diffraction microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20intragranular%20stress%20fields%20in%20plastically%20deformed%20titanium%20using%20point-focused%20high-energy%20diffraction%20microscopy&rft.jtitle=Journal%20of%20materials%20research&rft.au=Li,%20Wenxi&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-01-14&rft.volume=38&rft.issue=1&rft.spage=165&rft.epage=178&rft.pages=165-178&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00873-y&rft_dat=%3Cproquest_osti_%3E2774560370%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-dd36400ad576fb2c948da85aab0304428f58b5496448a285eb624026052a291b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774560370&rft_id=info:pmid/&rfr_iscdi=true |