Loading…

Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection

The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2022-05, Vol.939, Article R1
Main Authors: Grannan, Alexander M., Cheng, Jonathan S., Aggarwal, Ashna, Hawkins, Emily K., Xu, Yufan, Horn, Susanne, Sánchez-Álvarez, Jose, Aurnou, Jonathan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63
cites cdi_FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 939
creator Grannan, Alexander M.
Cheng, Jonathan S.
Aggarwal, Ashna
Hawkins, Emily K.
Xu, Yufan
Horn, Susanne
Sánchez-Álvarez, Jose
Aurnou, Jonathan M.
description The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.
doi_str_mv 10.1017/jfm.2022.204
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1924338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2022_204</cupid><sourcerecordid>2641819059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKs7H2DQrVNzm2Sy1FIvUBBE1yGTJu2UmcmYpGp3voNP4XP4Jj6JKS24cXMOHL7z8_MBcIrgCEHEL5e2HWGIcRp0DwwQZSLnjBb7YADTOUcIw0NwFMISQkSg4AMwnbz3xtet6aJqsn5VZdqrtyaz3rXZo1o3pp4vfj4-r7-_OuVnWXRZq-adiS5E7_pFrTPtulejY-26Y3BgVRPMyW4PwfPN5Gl8l08fbu_HV9NcE8ZjbnSpVUEEwYpow5gl2BbCVERoDWeCVUJAyhAhlleKcqFgwcpSEytQwalmZAjOtrmpRC2DrqPRi1SjSzUkEpgSUibofAv13r2sTIhy6Va-S70kZhSVSMBCJOpiS2nvQvDGyj7ZUH4tEZQbqTJJlRupadCEj3a4aitfz-bmL_Xfh19wgnpp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641819059</pqid></control><display><type>article</type><title>Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection</title><source>Cambridge University Press</source><creator>Grannan, Alexander M. ; Cheng, Jonathan S. ; Aggarwal, Ashna ; Hawkins, Emily K. ; Xu, Yufan ; Horn, Susanne ; Sánchez-Álvarez, Jose ; Aurnou, Jonathan M.</creator><creatorcontrib>Grannan, Alexander M. ; Cheng, Jonathan S. ; Aggarwal, Ashna ; Hawkins, Emily K. ; Xu, Yufan ; Horn, Susanne ; Sánchez-Álvarez, Jose ; Aurnou, Jonathan M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2022.204</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bénard convection ; Convection ; Convection modes ; ENGINEERING ; Estimates ; Experiments ; Fluid mechanics ; Forces ; Heat ; Heat flux ; Heat transfer ; Intercomparison ; JFM Rapids ; Liquid metals ; Magnetic field ; Magnetic fields ; Magnetic flux ; magneto convection ; Metals ; Rayleigh number ; Rayleigh-Benard convection ; Reynolds number ; rotating flows ; Rotation ; Sensors</subject><ispartof>Journal of fluid mechanics, 2022-05, Vol.939, Article R1</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press</rights><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63</citedby><cites>FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63</cites><orcidid>0000-0002-8642-2962 ; 0000-0002-2326-9614 ; 0000-0001-9123-124X ; 0000-0002-6145-1927 ; 0000-0001-8471-3777 ; 0000-0002-7945-3250 ; 0000-0002-7737-3265 ; 0000-0001-5961-454X ; 000000019123124X ; 0000000184713777 ; 000000015961454X ; 0000000279453250 ; 0000000286422962 ; 0000000223269614 ; 0000000277373265 ; 0000000261451927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202200204X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1924338$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grannan, Alexander M.</creatorcontrib><creatorcontrib>Cheng, Jonathan S.</creatorcontrib><creatorcontrib>Aggarwal, Ashna</creatorcontrib><creatorcontrib>Hawkins, Emily K.</creatorcontrib><creatorcontrib>Xu, Yufan</creatorcontrib><creatorcontrib>Horn, Susanne</creatorcontrib><creatorcontrib>Sánchez-Álvarez, Jose</creatorcontrib><creatorcontrib>Aurnou, Jonathan M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.</description><subject>Bénard convection</subject><subject>Convection</subject><subject>Convection modes</subject><subject>ENGINEERING</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Fluid mechanics</subject><subject>Forces</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Intercomparison</subject><subject>JFM Rapids</subject><subject>Liquid metals</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>magneto convection</subject><subject>Metals</subject><subject>Rayleigh number</subject><subject>Rayleigh-Benard convection</subject><subject>Reynolds number</subject><subject>rotating flows</subject><subject>Rotation</subject><subject>Sensors</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEUhoMoWKs7H2DQrVNzm2Sy1FIvUBBE1yGTJu2UmcmYpGp3voNP4XP4Jj6JKS24cXMOHL7z8_MBcIrgCEHEL5e2HWGIcRp0DwwQZSLnjBb7YADTOUcIw0NwFMISQkSg4AMwnbz3xtet6aJqsn5VZdqrtyaz3rXZo1o3pp4vfj4-r7-_OuVnWXRZq-adiS5E7_pFrTPtulejY-26Y3BgVRPMyW4PwfPN5Gl8l08fbu_HV9NcE8ZjbnSpVUEEwYpow5gl2BbCVERoDWeCVUJAyhAhlleKcqFgwcpSEytQwalmZAjOtrmpRC2DrqPRi1SjSzUkEpgSUibofAv13r2sTIhy6Va-S70kZhSVSMBCJOpiS2nvQvDGyj7ZUH4tEZQbqTJJlRupadCEj3a4aitfz-bmL_Xfh19wgnpp</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Grannan, Alexander M.</creator><creator>Cheng, Jonathan S.</creator><creator>Aggarwal, Ashna</creator><creator>Hawkins, Emily K.</creator><creator>Xu, Yufan</creator><creator>Horn, Susanne</creator><creator>Sánchez-Álvarez, Jose</creator><creator>Aurnou, Jonathan M.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8642-2962</orcidid><orcidid>https://orcid.org/0000-0002-2326-9614</orcidid><orcidid>https://orcid.org/0000-0001-9123-124X</orcidid><orcidid>https://orcid.org/0000-0002-6145-1927</orcidid><orcidid>https://orcid.org/0000-0001-8471-3777</orcidid><orcidid>https://orcid.org/0000-0002-7945-3250</orcidid><orcidid>https://orcid.org/0000-0002-7737-3265</orcidid><orcidid>https://orcid.org/0000-0001-5961-454X</orcidid><orcidid>https://orcid.org/000000019123124X</orcidid><orcidid>https://orcid.org/0000000184713777</orcidid><orcidid>https://orcid.org/000000015961454X</orcidid><orcidid>https://orcid.org/0000000279453250</orcidid><orcidid>https://orcid.org/0000000286422962</orcidid><orcidid>https://orcid.org/0000000223269614</orcidid><orcidid>https://orcid.org/0000000277373265</orcidid><orcidid>https://orcid.org/0000000261451927</orcidid></search><sort><creationdate>20220525</creationdate><title>Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection</title><author>Grannan, Alexander M. ; Cheng, Jonathan S. ; Aggarwal, Ashna ; Hawkins, Emily K. ; Xu, Yufan ; Horn, Susanne ; Sánchez-Álvarez, Jose ; Aurnou, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bénard convection</topic><topic>Convection</topic><topic>Convection modes</topic><topic>ENGINEERING</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Fluid mechanics</topic><topic>Forces</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Intercomparison</topic><topic>JFM Rapids</topic><topic>Liquid metals</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>magneto convection</topic><topic>Metals</topic><topic>Rayleigh number</topic><topic>Rayleigh-Benard convection</topic><topic>Reynolds number</topic><topic>rotating flows</topic><topic>Rotation</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grannan, Alexander M.</creatorcontrib><creatorcontrib>Cheng, Jonathan S.</creatorcontrib><creatorcontrib>Aggarwal, Ashna</creatorcontrib><creatorcontrib>Hawkins, Emily K.</creatorcontrib><creatorcontrib>Xu, Yufan</creatorcontrib><creatorcontrib>Horn, Susanne</creatorcontrib><creatorcontrib>Sánchez-Álvarez, Jose</creatorcontrib><creatorcontrib>Aurnou, Jonathan M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grannan, Alexander M.</au><au>Cheng, Jonathan S.</au><au>Aggarwal, Ashna</au><au>Hawkins, Emily K.</au><au>Xu, Yufan</au><au>Horn, Susanne</au><au>Sánchez-Álvarez, Jose</au><au>Aurnou, Jonathan M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>939</volume><artnum>R1</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2022.204</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8642-2962</orcidid><orcidid>https://orcid.org/0000-0002-2326-9614</orcidid><orcidid>https://orcid.org/0000-0001-9123-124X</orcidid><orcidid>https://orcid.org/0000-0002-6145-1927</orcidid><orcidid>https://orcid.org/0000-0001-8471-3777</orcidid><orcidid>https://orcid.org/0000-0002-7945-3250</orcidid><orcidid>https://orcid.org/0000-0002-7737-3265</orcidid><orcidid>https://orcid.org/0000-0001-5961-454X</orcidid><orcidid>https://orcid.org/000000019123124X</orcidid><orcidid>https://orcid.org/0000000184713777</orcidid><orcidid>https://orcid.org/000000015961454X</orcidid><orcidid>https://orcid.org/0000000279453250</orcidid><orcidid>https://orcid.org/0000000286422962</orcidid><orcidid>https://orcid.org/0000000223269614</orcidid><orcidid>https://orcid.org/0000000277373265</orcidid><orcidid>https://orcid.org/0000000261451927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2022-05, Vol.939, Article R1
issn 0022-1120
1469-7645
language eng
recordid cdi_osti_scitechconnect_1924338
source Cambridge University Press
subjects Bénard convection
Convection
Convection modes
ENGINEERING
Estimates
Experiments
Fluid mechanics
Forces
Heat
Heat flux
Heat transfer
Intercomparison
JFM Rapids
Liquid metals
Magnetic field
Magnetic fields
Magnetic flux
magneto convection
Metals
Rayleigh number
Rayleigh-Benard convection
Reynolds number
rotating flows
Rotation
Sensors
title Experimental pub crawl from Rayleigh–Bénard to magnetostrophic convection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20pub%20crawl%20from%20Rayleigh%E2%80%93B%C3%A9nard%20to%20magnetostrophic%20convection&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Grannan,%20Alexander%20M.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-05-25&rft.volume=939&rft.artnum=R1&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2022.204&rft_dat=%3Cproquest_osti_%3E2641819059%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ec8ca53932a3ce66f32f59eb39cc0d96b99046133f7ba479a05688c3f91574c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641819059&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2022_204&rfr_iscdi=true