Loading…

Neutrino energy reconstruction from semi-inclusive samples

We study neutrino-nucleus charged-current reactions on finite nuclei for the situation in which an outgoing muon and a proton are detected in coincidence, {\it i.e.,} we focus on semi-inclusive cross sections. We limit our attention to one-body current interactions (quasielastic scattering) and asse...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. C 2023-02, Vol.105 (2)
Main Authors: González-Jiménez, R., Barbaro, M. B., Caballero, J. A., Donnelly, T. W., Jachowicz, N., Megias, G. D., Niewczas, K., Nikolakopoulos, A., Van Orden, J. W., Udías, J. M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study neutrino-nucleus charged-current reactions on finite nuclei for the situation in which an outgoing muon and a proton are detected in coincidence, {\it i.e.,} we focus on semi-inclusive cross sections. We limit our attention to one-body current interactions (quasielastic scattering) and assess the impact of different nuclear effects in the determination of the neutrino energy. We identify the regions in phase space where the neutrino energy can be reconstructed relatively well, and study whether the cross section in those regions is significant. Our results indicate that it is possible to filter more than 50\% of all events according to the muon and proton kinematics, so that for the DUNE and T2K fluxes the neutrino energy can be determined with an uncertainty of less than 1\% and 3\%, respectively. Furthermore, we find that the reconstructed neutrino energy does not depend strongly on how one treats the final-state interactions and is not much affected by the description of the initial state. On the other hand, the estimations of the uncertainty on the neutrino energy show important sensitivity to the modeling of the initial state.
ISSN:2469-9985