Loading…

Proton-neutron entanglement in the nuclear shell model

Abstract We compute the proton-neutron entanglement entropy in the interacting nuclear shell model for a variety of nuclides and interactions. Some results make intuitive sense, for example, that the shell structure, as governed by single-particle and monopole energies, strongly affects the energeti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. G, Nuclear and particle physics Nuclear and particle physics, 2023-03, Vol.50 (4)
Main Authors: Johnson, Calvin W., Gorton, Oliver C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page
container_title Journal of physics. G, Nuclear and particle physics
container_volume 50
creator Johnson, Calvin W.
Gorton, Oliver C.
description Abstract We compute the proton-neutron entanglement entropy in the interacting nuclear shell model for a variety of nuclides and interactions. Some results make intuitive sense, for example, that the shell structure, as governed by single-particle and monopole energies, strongly affects the energetically available space and thus the entanglement entropy. We also find a surprising result: that the entanglement entropy at low excitation energy tends to decrease for nuclides when N ≠ Z . While we provide evidence this arises from the physical nuclear force by contrasting with random two-body interactions which shows no such decrease, the exact mechanism is unclear. Nonetheless, the low entanglement suggests that in models of neutron-rich nuclides, the coupling between protons and neutrons may be less computationally demanding than one might otherwise expect.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1961901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961901</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19619013</originalsourceid><addsrcrecordid>eNqNys0KAiEUQGGJguznHaS9oOhYrqNo2aL9MDi3NJwr6J33r0UP0Op8i7NgXBunpbNHvWRc-c5Kc_J-zTatvZVSnTWWM3evhQpKhJlqQQFIA74yTF-IhIIiCJxDhqGKFiFnMZUR8o6tnkNusP91yw7Xy-N8k6VR6ltIBCGGggiBeu2d9kqbv6YPiek2-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proton-neutron entanglement in the nuclear shell model</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Johnson, Calvin W. ; Gorton, Oliver C.</creator><creatorcontrib>Johnson, Calvin W. ; Gorton, Oliver C. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Abstract We compute the proton-neutron entanglement entropy in the interacting nuclear shell model for a variety of nuclides and interactions. Some results make intuitive sense, for example, that the shell structure, as governed by single-particle and monopole energies, strongly affects the energetically available space and thus the entanglement entropy. We also find a surprising result: that the entanglement entropy at low excitation energy tends to decrease for nuclides when N ≠ Z . While we provide evidence this arises from the physical nuclear force by contrasting with random two-body interactions which shows no such decrease, the exact mechanism is unclear. Nonetheless, the low entanglement suggests that in models of neutron-rich nuclides, the coupling between protons and neutrons may be less computationally demanding than one might otherwise expect.</description><identifier>ISSN: 0954-3899</identifier><identifier>EISSN: 1361-6471</identifier><language>eng</language><publisher>United Kingdom: IOP Publishing</publisher><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><ispartof>Journal of physics. G, Nuclear and particle physics, 2023-03, Vol.50 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000310597384 ; 0000000336439640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1961901$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Calvin W.</creatorcontrib><creatorcontrib>Gorton, Oliver C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Proton-neutron entanglement in the nuclear shell model</title><title>Journal of physics. G, Nuclear and particle physics</title><description>Abstract We compute the proton-neutron entanglement entropy in the interacting nuclear shell model for a variety of nuclides and interactions. Some results make intuitive sense, for example, that the shell structure, as governed by single-particle and monopole energies, strongly affects the energetically available space and thus the entanglement entropy. We also find a surprising result: that the entanglement entropy at low excitation energy tends to decrease for nuclides when N ≠ Z . While we provide evidence this arises from the physical nuclear force by contrasting with random two-body interactions which shows no such decrease, the exact mechanism is unclear. Nonetheless, the low entanglement suggests that in models of neutron-rich nuclides, the coupling between protons and neutrons may be less computationally demanding than one might otherwise expect.</description><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><issn>0954-3899</issn><issn>1361-6471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNys0KAiEUQGGJguznHaS9oOhYrqNo2aL9MDi3NJwr6J33r0UP0Op8i7NgXBunpbNHvWRc-c5Kc_J-zTatvZVSnTWWM3evhQpKhJlqQQFIA74yTF-IhIIiCJxDhqGKFiFnMZUR8o6tnkNusP91yw7Xy-N8k6VR6ltIBCGGggiBeu2d9kqbv6YPiek2-A</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Johnson, Calvin W.</creator><creator>Gorton, Oliver C.</creator><general>IOP Publishing</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000310597384</orcidid><orcidid>https://orcid.org/0000000336439640</orcidid></search><sort><creationdate>20230317</creationdate><title>Proton-neutron entanglement in the nuclear shell model</title><author>Johnson, Calvin W. ; Gorton, Oliver C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19619013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Calvin W.</creatorcontrib><creatorcontrib>Gorton, Oliver C.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Calvin W.</au><au>Gorton, Oliver C.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton-neutron entanglement in the nuclear shell model</atitle><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle><date>2023-03-17</date><risdate>2023</risdate><volume>50</volume><issue>4</issue><issn>0954-3899</issn><eissn>1361-6471</eissn><abstract>Abstract We compute the proton-neutron entanglement entropy in the interacting nuclear shell model for a variety of nuclides and interactions. Some results make intuitive sense, for example, that the shell structure, as governed by single-particle and monopole energies, strongly affects the energetically available space and thus the entanglement entropy. We also find a surprising result: that the entanglement entropy at low excitation energy tends to decrease for nuclides when N ≠ Z . While we provide evidence this arises from the physical nuclear force by contrasting with random two-body interactions which shows no such decrease, the exact mechanism is unclear. Nonetheless, the low entanglement suggests that in models of neutron-rich nuclides, the coupling between protons and neutrons may be less computationally demanding than one might otherwise expect.</abstract><cop>United Kingdom</cop><pub>IOP Publishing</pub><orcidid>https://orcid.org/0000000310597384</orcidid><orcidid>https://orcid.org/0000000336439640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-3899
ispartof Journal of physics. G, Nuclear and particle physics, 2023-03, Vol.50 (4)
issn 0954-3899
1361-6471
language eng
recordid cdi_osti_scitechconnect_1961901
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects NUCLEAR PHYSICS AND RADIATION PHYSICS
title Proton-neutron entanglement in the nuclear shell model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton-neutron%20entanglement%20in%20the%20nuclear%20shell%20model&rft.jtitle=Journal%20of%20physics.%20G,%20Nuclear%20and%20particle%20physics&rft.au=Johnson,%20Calvin%20W.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2023-03-17&rft.volume=50&rft.issue=4&rft.issn=0954-3899&rft.eissn=1361-6471&rft_id=info:doi/&rft_dat=%3Costi%3E1961901%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_19619013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true